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Linear systems of equations in Lattice QCD

In Lattice QCD codes roughly 85% of time is spent solving linear
systems of equations of the type

Dψ = φ (⋆)

Hence it is of utmost importance to find efficient solvers!

Solving (⋆) is required in many situations, e.g.,

▶ in the calculation of Propagators

▶ in the hybrid Monte-Carlo process

Depending on the discretization and situation

▶ D is sparse (e.g., Wilson) or dense (e.g., Overlap)

▶ One has to solve only for one rhs or for many rhs

All this information should influence the choice of solver!
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Discretizations of the Dirac operator

Discretizations by covariant finite-differences

dµψx = a−1(Uµ
x−aµψx−aµ − (Uµ

x )
† ψx+aµ)

▶ Wilson discretization (stabilizing 2nd order term)

DW =
4∑

µ=1

(γµ ⊗ dµ + a−1d2
µ) ∈ C12L3

sLt×12L3
sLt

Non-hermitian, sparse (next-neighbor), (γ5D)† = γ5D

▶ Overlap discretization (Ginsparg-Wilson)

DO = I + γ5 sign(γ5(DW −m)) ∈ C12L3
sLt×12L3

sLt
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Properties of linear systems in Lattice QCD

Typical discretizations yield linear systems Dψ = φ where

▶ D is non-hermitian, yet (γ5D)† = γ5D

▶ spec(D) lies in the right half-plane

▶ D is very large (on a 323 × 64 lattice ≈ 25M unknowns)

▶ D is sparse, i.e., contains only next-neighbor couplings

≈ 100 non-zeroes per row

Matrix-Vector operations are cheap O(L3
sLt) = O(V )

In implementations D · x is often highly optimized

→ use this in solvers for Dψ = φ
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Notations

▶ Linear system of equations
∑n

j=1 aijxj = bi, i = 1, . . . , n

Ax = b, A ∈ Cn×n, x ∈ Cn, b ∈ Cn

▶ Euclidean inner product

⟨x, y⟩2 = y†x =
n∑

i=1

ȳixi

▶ Adjoint A† of A w.r.t. ⟨., .⟩2

⟨Ax, y⟩2 = ⟨x,A†y⟩2

▶ A hermitian ⇐⇒ A† = A
▶ A hermitian positive definite

A† = A and x†Ax > 0, x ̸= 0
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Direct methods

Idea: Solve Ax = b by row-/column-manipulations

▶ Usually based on factorizing the system matrix A

▶ Methods based on Gaussian elimination
▶ A = LU : LU factorization

A =
L

· U

▶ A = LDL∗: Cholesky factorization (A hermitian)

⊕ No restrictions on applications

⊖ Expensive methods (O(n3) for dense matrices)

▶ Methods exploiting sparsity exist, reducing complexity
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Iterative solvers

Given: Ax = b with solution x̂, A sparse

Find: Approximations x(k), k = 1, 2, . . . s.t. x(k) → x̂

1. How do we measure convergence x(k) → x̂?
▶ “Computable” measures (→ stopping criteria)?
▶ Monotone convergence in suitable norm possible?

2. How do we find iterates x(k) such that
▶ the iterative process converges, i.e., x(k) → x̂?
▶ there is a “simple” update formula for x(k+1)?
▶ each iteration only requires the action of A on vector?

G. Ramirez-Hidalgo, LAP 24 7/28



Motivation and Notation Direct methods Iterative solvers The Krylov Zoo Some extra material

How do we measure convergence?

Given: Iterate x(k) in the kth iteration

▶ Using the error e(k) = x̂− x(k)

x(k) → x̂ =⇒ ||e(k)|| → 0

In most cases the error is not readily computable!

▶ Using the residual r(k) = b− Ax(k)

x(k) → x̂ =⇒ ||r(k)|| → 0

The residual is a computable quantity! Note that

r(k) = b− Ax(k) = Ax̂− Ax(k) = Ae(k)

In what follows we assume that x(0) = 0
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How do we find iterates x(k)?

Task: Given b find x s.t. Ax = b or

n∑
j=1

aijxj = bi, i = 1, . . . , n (∗)

Idea: Solve for xi in (∗) for each i
▶ Jacobi iteration for i = 1, . . . , n

x
(k+1)
i = x

(k)
i +

1

aii

(
bi −

n∑
j=1

aijx
(k)
j

)
▶ Gauss-Seidel iteration for i = 1, . . . , n

x
(k+1)
i = x

(k)
i +

1

aii

(
bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i

aijx
(k)
j

)
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Splitting methods

Splitting methods use the additive decomposition of A

A =
L

+
D

+
U

▶ Jacobi: x(k+1) = x(k) +D−1r(k)

▶ Gauss-Seidel: x(k+1) = x(k) + (D + L)−1r(k)

▶ SOR: x(k+1) = x(k) + ( 1
ω
D + L)−1r(k)

General splitting method: A =M +N

x(k+1) = x(k) +M−1r(k) =⇒ e(k+1) = e(k) −M−1Ae(k)

Convergent iff ∥I −M−1A∥ < 1 for some norm ∥ · ∥

Often used as preconditioners (→ Solvers II)
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Linear Algebra (Minimal polynomial)

Let p⋆m be the polynomial of smallest degree m s.t.

p⋆m(A) = 0 with p⋆(0) = 1 ⇔ p⋆m(t) = 1− tq⋆m−1(t).

Consequence: A−1 = q⋆m−1(A), a polynomial in A!

⇒ Solution x̂ of Ax = b given by q⋆m−1(A)b

Idea: Polynomial approximations x(k) of x̂ by

x(k) = qk(A)b, qk(t) ∈ Πk = {p(t) =
k∑

ℓ=0

αℓt
ℓ}

Requirements: Computation of x(k+1) needs

▶ multiplication by A

▶ update of coefficients α1, . . . , αk+1
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Krylov subspace methods

Krylov subspace methods

Approximation x(k) of the solution x̂ in Krylov subspace

Kk(A, b) = {p(A)b : p ∈ Πk−1} = span{b, Ab, . . . , Ak−1b}

Polynomial connection:

▶ x(k) = qk−1(A)b, deg qk−1 ≤ k − 1

▶ r(k) = pk(A)b, e
(k) = pk(A)e

(0), pk = 1− tqk−1

One-to-one correspondence: Any sequence pk with pk(0) = 1
defines r(k) = pk(A)b, x

(k) = qk−1(A)b.

Categories:

▶ stationary (e.g. Richardson, Chebyshev): pk indept of b

▶ non-stationary (e.g. CG, GMRES, . . . ): pk adapts to b
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Example: Richardson iteration

For A hermitian positive definite, i.e., spec(A) ⊆ R+

Richardson Iteration

b given, x(0) = 0, α > ∥A∥2/2
for k = 0, 1, 2, . . . do
x(k+1) = (I − α−1A)x(k) + α−1b

end for
x

y

∥A∥2

1
pk(t)

We have

r(k) = pk(A)b ∈ Kk+1(A, b) with pk(t) = (1− α−1t)k

e(k) = pk(A)e
(0)

x(k) = qk−1(A)b ∈ Kk(A, b) with pk(t) = 1− tqk−1(t)

a stationary Krylov subspace method!
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Krylov subspace methods — Theory

Does Richardson iteration converge? We have

∥r(k)∥2 = ∥(I − α−1A)kb∥2 ≤ ∥(I − α−1A)∥2︸ ︷︷ ︸
<1

k∥b∥2 −→ 0

Best choice for α :

α =
λmax + λmin

2
⇒ ∥(I − α−1A)∥2 =

κ− 1

κ+ 1
, κ =

λmax

λmin

.

x

y

λmin λmax

1

−1
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Krylov subspace methods — Theory

r(k) = pk(A)b, e(k) = pk(A)e
(0)

Can we aim for optimality?
▶ Minimize ∥pk(A)e(0)∥ = ∥e(k)∥ over all pk
▶ Without knowing e(0) ????
▶ Works for the A-norm

∥x∥A = ⟨x, x⟩
1
2
A with ⟨x, y⟩A = ⟨Ax, y⟩

▶ Method of conjugate gradients (CG)

x

y

λmin λmax

1

−1
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Optimal Krylov subspace methods I — Conjugate

Gradients

Conjugate Gradients

r(0) = b, p(0) = r(0)

for k = 1, 2, . . . do

αk−1 =
⟨r(k−1),r(k−1)⟩2
⟨Ap(k−1),p(k−1)⟩2

x(k) = x(k−1) + αk−1p
(k−1)

r(k) = r(k−1) − αk−1Ap
(k−1)

βk−1 =
⟨r(k),r(k)⟩2

⟨r(k−1),r(k−1)⟩2
p(k) = r(k) + βk−1p

(k−1)

end for

Minimization of the functional
L(x) = 1

2
⟨x, x⟩A − ⟨x, b⟩2 = 1

2

(
∥e∥2A − ∥x̂∥2A

)
▶ p(k) conjugate gradients of L
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Conjugate Gradients — Properties

1. A must be hermitian and positive definite

2. Minimal error in ∥.∥A for x(k) ∈ Kk(A, b)

∥e(k)∥ = min
pk∈Πk

∥pk(A)e(0)∥A ≤ 1

cosh
(
k ln

√
κ−1√
κ+1

)∥e(0)∥A
≤ 2

(√
κ−1√
κ+1

)k
∥e(0)∥A

3. Variational property r(k) ⊥ Kk(A, b)

4. Minimization of the functional

L(x) = 1

2
⟨x, x⟩A − ⟨x, b⟩2, x ∈ Kk(A, b)

5. Short recurrence, i.e., x(k+1) requires only x(k)
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Optimal Krylov subspace methods II — CR and

MINRES

For A hermitian find the Krylov subspace method with

min
x(k)∈Kk(A,b)

∥b− Ax(k)∥2 = min
x(k)∈Kk(A,b)

∥r(k)∥2

The optimal method w.r.t. ∥.∥2 is known as conjugate residuals (CR)

Similar to CG, CR introduces search directions p(k)

▶ The residuals are conjugate, i.e. ⟨r(k), Ar(ℓ)⟩ = 0 for k ̸= ℓ

▶ The Ap(k) are mutually orthogonal

▶ Short recurrence: x(k+1) requires only x(k)
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Conjugate Residuals (CR)

r(0) = b, p(0) = r(0)

for k = 1, 2, . . . do

αk−1 =
⟨r(k−1),Ar(k−1)⟩2
⟨Ap(k−1),Ap(k−1)⟩2

x(k) = x(k−1) + αk−1p
(k−1)

r(k) = r(k−1) − αk−1Ap
(k−1)

βk−1 =
⟨r(k),Ar(k)⟩2

⟨r(k−1),Ar(k−1)⟩2
p(k) = r(k) + βk−1p

(k−1)

Compute Apk = Ark + βk−1Apk−1

end for

▶ CR can break down (division by 0) if A is indefinite

▶ MINRES is a break-down free, short-recurrence realization of CR
(works for any hermitian A)
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Optimal Krylov subspace methods III — GMRES

What if A is not hermitian? Optimality w.r.t. ∥.∥2 possible

min
x(k)∈Kk(A,b)

∥b− Ax(k)∥2 = min
x(k)∈Kk(A,b)

∥r(k)∥2

Idea: For orthonormal basis v1, . . . , vk of Kk(A, b)

x ∈ Kk(A, b) =⇒ x =
k∑

ℓ=1

vℓyℓ = [v1 | . . . | vk]y = Vky

Hence we find

min
x(k)∈Kk(A,b)

∥b− Ax(k)∥2 = min
y

∥b− AVky∥2 (⋆)
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The Arnoldi Iteration

Compute orthonormal basis {v1, . . . , vk} of Kk(A, b)

Arnoldi Iteration

β = ∥b∥2, v1 = β−1b
for k = 1, 2, . . . do
q = Avk
for j = 1, . . . , k do
hj,k = ⟨vj, q⟩2
q = q − hj,kvj

end for
hk+1,k = ∥q∥2
vk+1 = h−1

k+1,kq
end for

With Vk = [v1 | . . . | vk] and

Hk+1,k =

we have the Arnoldi relation

AVk = Vk+1Hk+1,k

with V †
k Vk = I
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Full GMRES

Using the Arnoldi relation in (⋆) we find

min
y

∥b− AVky∥2 = min
y

∥b− Vk+1Hk+1,ky∥2

Since Vk+1 has orthonormal columns and v1 = ∥b∥−1
2 b

min
y

∥b− Vk+1Hk+1,kVky∥2 = min
y

∥∥b∥2e1 −Hk+1,ky∥2

Näıve GMRES

for k = 1, 2, . . . do
Compute vk, Hk+1,k (Arnoldi)
Solve argminy ∥∥b∥2e1 −Hk+1,ky∥2
x(k) = Vky

end for
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Restarted GMRES

Although an optimal method, GMRES has severe drawbacks:

▶ The computation of x(k) requires Vk = [v1 | . . . | vk]
⇒ Storage requirements grow with k
⇒ Computation time in Arnoldi grows with k

▶ Least-Squares solution requires O(k3) operations

Idea: Restart GMRES every m-iterations (⇒ GMRES(m))

GMRES(m)

for ℓ = 0, 1, . . . do
r(0) = b− Ax(0), β = ∥r(0)∥2, v1 = β−1r(0)

Compute Vm, Hm+1,m (Arnoldi)
ym = argminy ∥βe1 −Hm+1,my∥2
x(0) = x(0) + Vmym

end for
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Optimal Krylov subspace methods — Summary

requirements optimality recurrence

CG
A = A†

∥.∥A short⟨x, x⟩A > 0, x ̸= 0

MINRES∗ A = A† ∥.∥2 short

GMRES† none ∥.∥2 long

▶ What are the requirements for short recurrence?

▶ Do non-optimal methods exist with short recurrence?
(see the extra material slides on Faber-Manteuffel and Barth-Manteuffel)

See also the two extra-material slides on BiCGstab (a non-optimal Krylov subspace

method – used in the LQCD community for a long time).
∗mathematically equivalent, but possibly unstabe: CR
†mathematically equivalent, but possibly unstabe: GCR
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List of Methods

requirements optimal recurrence

CG hpd ∥.∥A short
MINRES hermitian ∥.∥2 short

GMRES none ∥.∥2 long → restarts

CGN none ∥.∥A†A short A†Ax = A†b

BCG none no short
similar to CG
unstable

QMR none no short similar to GMRES
BiCGstab none no short breakdowns

SUMR
shifted ∥.∥2 short

multiple
unitary recursion

More on Krylov subspace methods: [3, 6].
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Krylov subspace methods are all-duty solvers

▶ require only multiplication by A· and inner products
▶ easy to implement (especially if A· is already done)
▶ easy to parallelize (log(p)-scaling due to inner products)

▶ Whenever short-term recurrence is possible
▶ constant cost per iteration
▶ constant memory consumption

▶ If only long-term recurrence is possible
▶ restarts limit amount of work
▶ deflated-restarts are even more efficient (→ Solvers II)

▶ Convergence speed depends on the spectrum of A
▶ separation from the origin important (since pk ∈ Πk)
▶ preconditioning improves performance (→ Solvers II)
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Some extra material
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Krylov subspace methods — Theory

(particularly useful right after Richardson’s convergence analysis)

r(k) = pk(A)b, e(k) = pk(A)e
(0)

=⇒ ∥r(k)∥ ≤ ∥pk(A)∥∥b∥, ∥e(k)∥ ≤ ∥pk(A)∥∥e(0)∥

Notation: Πk = {p ∈ Πk, p(0) = 1}
Better than Richardson:
▶ ∥pk(A)∥2 = maxλ∈spec(A) |pk(λ)|
▶ “best”: pk = argmin

{
∥p̃k(A)∥2, p̃k ∈ Πk

}
▶ ∥pk∥[λmin,λmax] = maxλ∈[λmin,λmax] |pk(λ)| ≥ ∥pk(A)∥2
▶ “second best”: pk = argmin

{
∥p̃k(A)∥[λmin,λmax], p̃k ∈ Πk

}
▶ Solution for “second best” is known:

Chebyshev polynomials ⇒ Chebyshev iteration
G. Ramirez-Hidalgo, LAP 24 28/28
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Faber-Manteuffel Theorem

The Faber-Manteuffel Theorem

There exists an optimal method with (s + 2)-term recurrence iff A is
s-normal, i.e., A† = p(A), p ∈ Πs

▶ A normal =⇒ A† = p(A), p ∈ Πn−1

▶ A hermitian, A† = A −→ (3-term recurrence)

▶ A anti-hermitian A† = −A −→ (3-term recurrence)

▶ Chiral operator γ5D = −Dγ5 =⇒ D† = −D
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Barth-Manteuffel Theorem — Ginsparg-Wilson

relation

The Barth-Manteuffel Theorem

There exists an optimal method with (s + 2, t)-term recurrence iff A is
(s, t)-normal, i.e.,

A† =
p(A)

q(A)
, p ∈ Πs, q ∈ Πt

▶ Methods have multiple recursions
▶ Occurrence in Lattice QCD: Ginsparg-Wilson relation

Dγ5 + γ5D = aDγ5D ⇐⇒ γ5(I − aD)D† = −γ5D
⇐⇒ D† = (I − aD)−1D

▶ D fulfills Ginsparg-Wilson ⇐⇒ D is (1, 1)-normal
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Non-optimal Krylov subspace methods — BCG

What if no optimal short recurrence method exists for A?

Ansatz: Throw optimality over board!

▶ Instead of building one Krylov subspace build two

Kk(A, r
(0)) and Kk(A

†, r̃(0))

▶ bi-orthogonalization

▶ Similar to CG, the residuals of BCG fulfill

r(k) ⊥ Kk(A
†, r̃(0))

▶ Not optimal in any norm
▶ erratic convergence behaviour (→ excercises)
▶ breakdowns can occur, i.e., convergence not guaranteed

▶ BiCGstab is a stabilized variant of BCG
G. Ramirez-Hidalgo, LAP 24 28/28
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BiCGstab

r(0) = b, β0 = 0
r̂ = r shadow residual ⟨r, r̂⟩2 ̸= 0
for k = 0, 1, . . . do
ρk = ⟨r(k), r̂⟩2
βk = ρk

ρk−1
· αk−1

ωk−1

p(k) = r(k) + βk(p
k−1 − ωk−1v

(k−1))
αk = ρk

⟨Ap(k),r̂⟩2
x(k+ 1

2 ) = x(k) + αkp
(k)

s(k) = r(k) − αkAp
(k) s(k) ≡ r(k+

1
2 )

ωk = ⟨s(k),As(k)⟩2
⟨As(k),As(k)⟩2

x(k+1) = x(k+ 1
2 ) + ωks

(k)

r(k+1) = s(k) − ωkAs
(k)

end for
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