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Lecture 1

Basic Concepts

Let us consider an n-dimensional manifold M. We denote the tangent and
cotangent bundles whose sections correspond to vector fields and 1-forms as T M
and T*M, respectively. The basic idea of generalized geometry is to combine
vectors and 1-forms into a single object. So, we consider the direct sum of
tangent and cotangent bundles £ = T'M & T* M which is called the generalized
tangent bundle. Sections of F are called generalized vectors and a generalized
vector X € T'E can be written in terms of a vector field X € I'T'M and a 1-form
EeTT*M as
X=X+¢
. . X

or we can also denote it in the matrix form as X = . On FE, one can

3

define a bilinear form <, > which is written for generalized vectors X = X +¢
and Y =Y + n as follows

1
<Xy >:§(ix’l7+iy€) (1.1)

where i x denotes the interior derivative or contraction with respect to the vector
field X. So, for a single generalized vector, we have < X, X >= ix£. The
symmetry group of this bilinear form is the orthogonal group

OTMaT*M)={AeGL(TMa&T"M)| < A,A. >=<.,.>}

and this bilinear form has signature (n,n). We can see this as follows. For the
basis vectors {X,} € I'TM and basis 1-forms {e*} e TT*M for a = 1,...,n, we
can define a basis for generalized vectors as

Xyq = X, +eeq

where A =1,...,2n and e = +. For e =1, <, > gives a + sign and for e = —1,
<, > gives a — sign. The elements of O(n,n) are in the form of

o-(4 i)



where
A:TTM —TTM , AT . TT*M - TT*M

g:TT*M —TTM , B:ITTM —-TT*M

and we can write B € A2T*M as a 2-form and 8 € A2TM as a 2-vector. The
invariance of <, > under O(n,n) gives shear transformations for generalized
vectors.We have B- and B-transforms of X as follows

B(X+€ = X+E+ixB (1.2)
FPX+E = X+igB+e (1.3)

A metric g defined on M can be seen as a map g : TM — T*M which is
invertible. So, we can define a generalized metric on E induced by g as follows

g—<2 951). (1.4)

So, the G-dual of a generalized vector X = X + £ can be written as
X =G(x)= ( )gf ) eE"

where X denotes the g-dual 1-form and EN denotes the g-dual vector field and
E* ~ E. In general, the B-transform of G can be written as

_ 7lB —1
60—, potis ft ) (15)

which is the generalized metric induced by g and B. Since G? = I, £1 eigenspaces
of G which are denoted by V* give a metric splitting of F

TM&T*M=V,®V_

corresponding to maximally positive/negative definite subbundles. The gener-
alized metric G can be written in terms of the bilinear form restricted to Vi as
follows

G(,)=<,>y — <, >_. (1.6)

We can also define an admissible metric for which the choices of V. correspond
to
Ve = {XiX:XerTM}.

Similar to the Lie bracket [, ] of vector fields on I'T'M, we can also define a
bracket operation on E called Courant bracket as [, ]¢ : A2E — T'E. For two
generalized vectors X = X + & and Y =Y + 7, Courant bracket is defined as

Ve = [X, V] + Lxn = Ly = S (ixn — ive) (17)



where Lx is the Lie derivative with respect to the vector field X and d is the
exterior derivative. If we define the anchor map n : TE — I'TM as n(X) = X,
then the Courant bracket satisfies

m([¥, V) = [7 (&), (V)] (1.8)

which can easily be seen from the definition. Although the Courant bracket is
an antisymmetric bracket, it does not satisfy the Jacobi identity and hence does
not correspond to a Lie bracket. However, with the definition of the Courant
bracket, £ admits a Courant algebroid structure. For X', ), Z € I'E, a Courant
algebroid (E, [, ]¢, <, >,7) satisfies the following properties

m([X. V]e) = [7(X), 7(V)]
X, Ve = fIX. Ve + (n(X))Y- <X,V >df
<df,dg>=0

[Xa D}’Z]C}C_F D}’ [Z’X]C]C'_'_ [Z’ [va]C}C = dNU(vavZ)

which is satisfed by the generalized tangent bundle £ =TM ®&T*M. Here Nij
denotes the Nijenhuis operator defined by

1
NZ](X,J/,Z): §(< [Xay}C-,Z>+< [y,Z]C,X>+ < [ZaX]Cay>)'

On FE, one can define an isotropic splitting s : I'TM — I'E and this deter-
mines a closed 3-form H on M given by

H(X,Y,Z) = (iyix H)(Z) =< [s(X), s(Y)]c, s(Z) > (1.9)

for X,Y,Z € I'T'M. The cohomology class of H classifies the Courant algebroids
on M up to isomorphism. In the presence of non-zero H, one can modifiy the
Courant bracket and define the twisted Courant bracket [, |g as follows

(X, Vu = [X,V]c —ixiyH. (1.10)

[, ]z also defines a Courant algebroid structure for dH = 0. Another bracket
operation on E which satisfies the Jacobi identity but not antisymmetric is the
Dorfman bracket [, |p and it is defined as

[X,y}D:[X,Y]+£aniyd§. (1.11)

Courant bracket correspond to the antisymmetrization of the Dorfman bracket
and it can also be written as

(X Ve =[X,V]p—d<X,Y>. (1.12)

Dorfman bracket originates from the Lie derivative on differential forms and it
is also considered as the generalized Lie derivative

LxY =[X,Vp



and it satisfies

La(fY) = (7(X) /)Y + fLxY
[Lx,Ly] = Lix.y, (1.13)
Ly(Y®2) =LY Z+YRLxZ.

We can define a generalized connection D on E which is compatible with the
bilinear form <, > corresponding to the linear operator

D:TE—-T(E"®E)
satisfying the following identities

Dx(fY) = =(X)(f)Y+ Dy (1.14)
T(X)<V, 2> = <Dx),Z>4+<)V,DxZ > (1.15)

where f is a function, X, Y, Z € T'E and we denote Dx)Y = ixD(Y). Here 4
is the contraction operator of elements in 'E* with elements in I'E. Given a
standard connection V on T'M, we can define the generalized connection DV
induced by V as

DV =VaV

corresponding to

DYY = Vo)) (1.16)

However, there is a freedom in choosing a connection as D' = D + « also defines
a connection where a € I'(E* ® o(F)) and o(F) denotes the bundle of skew-
symmetric endomorphisms of F w.r.t. <, >. However, by considering relevant
torsion-free, metric compatible and divergence-fixing conditions, we can define
a unique connection on E [ref].



