Lecture 2

Spinors and Complex
Structures

Generalized tangent bundle E has a natural action on the exterior bundle AM.
For ¥ =X+ ¢ €TFE and w € AM, it is given by

(X+HHw=ixw+EANw. (2.1)
Then, it can easily be seen that

(X +6)>w

ix(ixw+EAW)+HEA (ixw+ENW)
= (ix§w
= <X, X>w

which defines a Clifford algebra structure on E. For X',) € I'E, we have
XYV+YX=2< XY >.

So, the Clifford algebra has a natural representation on S = AM which is
the generalized spinor space. Since for signature (n,n), the volume element z
satisfies 22 = 1, we have

S=5Ste s~
which is equivalent to the decomposition

AM = AV M o AOddM.

So, the positive helicity generalized spinors on E correspond to even degree dif-
ferential forms on M and negative helicity generalized spinors on E correspond
to odd degree differential forms on M. We can define an inner product on the
space of generalized spinors. The spinor inner product of two generalized spinors
¢ and v is written as

(6,9) = (6*" A )



which corresponds to the Mukai pairing of forms. Here ( ), denotes the pro-
jection to the n-form part and £ and 7 are inner automorphisms of the exterior
algebra where 7 acts on a p-form w as w" = (—1)Pw and € acts as wé = (—1)L%]
with &7 is the composition of both automorphisms. This inner product is sym-
metric or skew-symmetric depending on the dimension of M

(¢.9) = (=) "V2(4), ¢).

So, we have for n = 0, 1(mod 4) symmetric and for n = 2,3(mod 4) skew inner
products. Since, only the n-form part remains in the spinor inner product, one
can sce that, for n = 0(mod 2), inner products of clements

ST xS  and S~ x ST are zero
ST x St and S~ x S~ are non-zero
and for n = 1(mod 2), inner products of elements

ST x ST and S~ x S~ are zero

St xS~ and S~ x ST are non-zero.

For example, for n = 4, the inner product is symmetric and the even spinors
are orthogonal to the odd spinors.

Let ¢ be any nonzero generalized spinor. Then, we define its null space
Ly CTM ©T*M as follows

Ly={XeTMoT"M : X.¢ =0}
The key property of null spaces is that they arc isotropic. If X',V € Lg, then
2<XY>o=(XY+VX)p=0

implying that < X,Y >= 0 for all &, € Ly which is the definition of the
isotropic subspace. A generalized spinor ¢ is called a pure spinor when Ly is
maximally isotropic, i.e., has dimension n.

Example: Let 1 € AM be the unit spinor. Then the null space is

(X+E€TM®T*M : (ix +EA)L =0} =TM

and TM C TM @& T*M is maximally isotropic. Hence 1 is a pure spinor.
Similarly, let z € AM be the volume form on M. Then, its null space is

{X4+€E€eTMeT*M: (ix +EN)z=0} =T"M
which is maximally isotropic. Hence z is also a pure spinor.
Let us consider the tangent bundle T'M of the manifold M. Suppose that
we have a globally defined map

J:TM —TM



which satisfies the property
J?=—1.

It follows that the action of J on T'M has eigenvalues +4 and —i. J is called an
almost complex structure. If .J is integrable which corresponds to the following
Nijenhuis tensor for vector fields X, Y € I'T'M

Ny(X,Y) = J[JX, Y]+ J[X,JY] - [JX,JY] + [X,Y]

vanishes
N;(X,Y)=0.

Then, J is called a complex structure.

On the other hand, if there is a globally defined non-degenerate 2-form w €
T (A2T*M), then it is said that M admits a pre-symplectic structure. Moreover,
if w is integrable, namely it satisfies the condition

dw=0

then w is called a symplectic structure on M. In the presence of both a complex
structure and a symplectic structure, a metric can be defined in terms of them

as follows
9(X,Y) =w(X,JY).

In fact, in the presence of two of complex, symplectic and metric structures, the
third can be written in terms of the other two.

One of the main properties of generalized geometry is that it unifies the com-
plex and symplectic structures in the concept of generalized complex structure.
A generalized almost complex structure is defined as a map

J:TMeT*M -TM oT*M

which satisfies
T =1
and it also has the property

<JX, TV >=< XY >.

Associated to J, there are two subbundles L7, Ly C (TM © T*M) ® C with
fibers respectively +i eigenspaces of the action of J. J is called a general-
ized complex structure if L corresponds to a maximally isotropic subbundle.
Namely for the sections of L7, X, € I'L 7, they satisfy

<X, X>=0

and
[X,V]c €TLy.



We can obtain the ordinary complex and symplectic structures from the special
cases of the generalized complex structure. For example, for the ordinary com-
plex structure J, we can construct a generalized complex structure as follows

-J 0
&7J = < 0 !]T )

and from a symplectic structure w, we can construct the following generalized

complex structure
0 wt
jw = < —w 0 > .

Hence, ordinary complex and symplectic structures are special cases for the
generalized complex structure. In fact, generalized metric can be written as a
combination of two generalized complex structures J; and J,, as

B B —-J 0 0 w') 0 Jwt\ [0 gt
g__ij“’__(o JT>(—w 0 >_(JTw 0 )_(g 0 )



