Lecture 4

T-duality

T-duality transforms the metric g and 2-form B of a background to another metric \widehat{g} and 2-form \widehat{B} according to the Buscher rules. However, we can picture this transformation in terms of topological quantities rather than geometric quantities. We call this approach as topological T-duality.

Let us consider a S^1 bundle E over a base manifold M

$$\pi: E \to M$$
.

The total space E is a fiber bundle which is locally homeomorphic to $S^1 \times M$ but globally can be different. A 3-form field H is defined locally as the exterior derivative of the 2-form field B

$$H = dB$$

and defines a cohomology class in $H^3(E,\mathbb{Z})$. When the local exactness is true globally, H corresponds to a trivial class in cohomology. The topological properties of the T-duality map do not depend on the details of the B field, but only on the class H.

On the other hand, S^1 bundles correspond to principal U(1) bundles over the base manifold M and they are classified by the second cohomology group $H^2(M,\mathbb{Z})$. The element in $H^2(M,\mathbb{Z})$ characterising the bundle $\pi: E \to M$ is realized by the first Chern class c_1 . It can be computed by calculating the curvature of a principal U(1) connection 1-form A corresponding to the 2-form

$$F = dA$$
.

Now, we have the following topological data: A principal U(1) bundle $\pi: E \to M$, together with a pair of cohomology classes (F, H). The class $F \in H^2(M, \mathbb{Z})$ is the first Chern class and determines the isomorphism classes of the bundle, The class $H \in H^3(E, \mathbb{Z})$ is the cohomology class of the curvature of the B field. We will see that T-duality intermixes F and H. If we consider the T-dual bundle

$$\widehat{\pi}:\widehat{E}\to M.$$

There are also corresponding 3-form field $\widehat{H} \in H^3(E,\mathbb{Z})$ and 2-form Chern class $\widehat{F} \in H^2(M,\mathbb{Z})$. The meaning of T-duality is relating the couples (F,H) and $(\widehat{F},\widehat{H})$ to each other. Remember that a 3-form H on E can have three components on M and no component on S^1 such as

$$H = H_{abc}e^a \wedge e^b \wedge e^c = H_3$$

where a, b, c are coordinate indices on M and take values from 1, ..., n, or two components on M and one component on S^1 such as

$$H = H_{ab}e^a \wedge e^b \wedge e^\theta = H_2 \wedge e^\theta$$

where θ is the coordinate index on S^1 . We denote these legs on M as H_3 and H_2 , respectively and we have

$$H = H_3 + H_2 \wedge e^{\theta}.$$

Since, the 2-form F is defined on M, its both legs are on M and it and only has F_2 component

$$F_2 = F_{ab}e^a \wedge e^b$$
.

Now, T-duality transforms the fields

$$H = H_3 + H_2 \wedge e^{\theta}$$
$$F = F_2$$

to the fields on the bundle $\widehat{\pi}:\widehat{E}\to M$ as

$$\hat{H} = H_3 + F_2 \wedge e^{\theta}
 \hat{F} = H_2$$

So, it interchanges H_2 and F_2 to each other. Then, the Chern numbers of T-dual bundles are related as

$$F = i_{X_{\theta}} \widehat{H}$$

$$\widehat{F} = i_{X_{\theta}} H.$$

Let us back to the T-duality picture that transforms the metric g and 2-form B of a background to another metric \widehat{g} and 2-form \widehat{B} according to the Buscher rules. T-duality is applied according to a Killing vector V satisfying

$$L_V g = 0$$

$$L_V H = 0$$

where H = dB which can also be written in terms of B' in the same cohomology class $B' = B + d\zeta$ with a 1-form ζ . So, T-duality can be written in terms of a Killing vector V and a 1-form ζ . We can construct a generalized vector $V = V + \zeta$

to define the T-duality operation in the framework of generalized geometry. In fact, one can check that \mathcal{V} corresponds to a generalized Killing vector satisfying

$$\mathbb{L}_{\mathcal{V}}\mathcal{G} = 0$$

and we can normalize \mathcal{V} as

$$\langle \mathcal{V}, \mathcal{V} \rangle = 1.$$

We define the T-duality operation with respect to \mathcal{V} as $T_{\mathcal{V}} \in O(n, n)$

$$T_{\mathcal{V}} = I - 2\mathcal{V}\mathcal{V}^T \eta$$

where η is the bilinear form <, > and can be written as the matrix

$$\eta = \frac{1}{2} \left(\begin{array}{cc} 0 & I \\ I & 0 \end{array} \right).$$

To see this, let us consider for the generalized vector $\mathcal{X} = X + \xi$ the following

$$\eta(\mathcal{X}, \mathcal{X}) = \mathcal{X}^T \eta \mathcal{X}
= \begin{pmatrix} X & \xi \end{pmatrix} \frac{1}{2} \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} \begin{pmatrix} X \\ \xi \end{pmatrix}
= \begin{pmatrix} X & \xi \end{pmatrix} \frac{1}{2} \begin{pmatrix} \xi \\ X \end{pmatrix}
= \frac{1}{2} (i_X \xi + i_X \xi)
= i_X \xi.$$

The action of $T_{\mathcal{V}}$ on a generalized vector $\mathcal{X} = X + \xi$ gives

$$T_{\mathcal{V}}\mathcal{X} = \mathcal{X} - 2\mathcal{V}\mathcal{V}^{T}\eta\mathcal{V}$$

$$= \begin{pmatrix} X \\ \xi \end{pmatrix} - 2\begin{pmatrix} V \\ \zeta \end{pmatrix} \begin{pmatrix} V \\ \zeta \end{pmatrix} \begin{pmatrix} V \\ \zeta \end{pmatrix} \frac{1}{2}\begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} \begin{pmatrix} X \\ \xi \end{pmatrix}$$

$$= \begin{pmatrix} X \\ \xi \end{pmatrix} - \begin{pmatrix} V \\ \zeta \end{pmatrix} \begin{pmatrix} V \\ \zeta \end{pmatrix} \begin{pmatrix} V \\ \zeta \end{pmatrix}$$

$$= \begin{pmatrix} X \\ \xi \end{pmatrix} - (i_{V}\xi + i_{X}\zeta)\begin{pmatrix} V \\ \zeta \end{pmatrix}$$

$$= \begin{pmatrix} X - (i_{V}\xi + i_{X}\zeta)V \\ \xi - (i_{V}\xi + i_{X}\zeta)\zeta \end{pmatrix}.$$

So, we can write $T_{\mathcal{V}}\mathcal{X} = \mathcal{X} - 2 < \mathcal{X}, \mathcal{V} > \mathcal{V}$. The condition $\langle \mathcal{V}, \mathcal{V} \rangle = 1$ implies that $\langle T_{\mathcal{V}}\mathcal{X}, T_{\mathcal{V}}\mathcal{X} \rangle = \langle \mathcal{X}, \mathcal{X} \rangle$ and so $T_{\mathcal{V}} \in O(n, n)$ and $T_{\mathcal{V}}^2 = 1$. $T_{\mathcal{V}}$ transforms the generalized metric \mathcal{G} to the T-dual generalized metric as

$$\begin{split} \widetilde{\mathcal{G}} &= T_{\mathcal{V}}^T \mathcal{G} T_{\mathcal{V}} \\ \widetilde{\mathcal{G}}(\mathcal{X}, \mathcal{X}) &= \mathcal{G}(T_{\mathcal{V}} \mathcal{X}, T_{\mathcal{V}} \mathcal{X}). \end{split}$$

The action of $T_{\mathcal{V}}$ on generalized spinors is given by

$$\begin{split} \widetilde{\Phi} &= T_{\mathcal{V}} \Phi \\ &= i_{V} \Phi + \zeta \wedge \Phi \end{split}$$

where Φ is a generalized spinor and $\widetilde{\Phi}$ its T-dual.