
P. Steinbach (IKTP) Refactoring September 30th, 2011 1 / 29



Refactoring or How to Improve the Design of Existing Code!
- An Introduction -

Peter Steinbach

Institute for Nuclear and Particle Physics, TU Dresden

September 30th, 2011

P. Steinbach (IKTP) Refactoring September 30th, 2011 2 / 29



Outline

Motivation

What is Refactoring?

What is Refactoring and where is it used?

Unit Testing And Test-Driven Development

Code Smells

Refactorings

Summary

References

P. Steinbach (IKTP) Refactoring September 30th, 2011 3 / 29



Motivation

Motivation

Use Design-First ?

I Yes, before one codes a package, one should sit down with pen and paper

I No pen-and-paper design ended up 1:1 in production releases

Change is everywhere

I requirements change
‘‘Can your package read XML files as well?’’

I environments change
‘‘We are moving to tbb::concurrent vector! Please provide a check-in

until tomorrow!’’

I experience grows
‘‘Why in the world did I ever write such crap?’’

I upgrade legacy code
‘‘Ahh, and here is the code of your predecessor. You can use it as a

starting point!’’

P. Steinbach (IKTP) Refactoring September 30th, 2011 4 / 29



Motivation

Motivation

Use Design-First ?

I Yes, before one codes a package, one should sit down with pen and paper

I No pen-and-paper design ended up 1:1 in production releases

Change is everywhere

I requirements change
‘‘Can your package read XML files as well?’’

I environments change
‘‘We are moving to tbb::concurrent vector! Please provide a check-in

until tomorrow!’’

I experience grows
‘‘Why in the world did I ever write such crap?’’

I upgrade legacy code
‘‘Ahh, and here is the code of your predecessor. You can use it as a

starting point!’’

P. Steinbach (IKTP) Refactoring September 30th, 2011 4 / 29



What is Refactoring?

What is Refactoring?

Definition

Refactoring is a disciplined technique for restructuring an existing body of code,
altering its internal structure without changing its external behavior.[8]

History

I 1990 PhD thesis of John Opdyke (student of GoF member Ralph E. Johnson)

I 2000 Martin Fowler’s book “Refactoring” published (standard reference, [8])

I 2004 Micheal Feather’s book “Working Effectively with Legacy Code” ([7])

P. Steinbach (IKTP) Refactoring September 30th, 2011 5 / 29



What is Refactoring?

What is Refactoring?

Definition

Refactoring is a disciplined technique for restructuring an existing body of code,
altering its internal structure without changing its external behavior.[8]

History

I 1990 PhD thesis of John Opdyke (student of GoF member Ralph E. Johnson)

I 2000 Martin Fowler’s book “Refactoring” published (standard reference, [8])

I 2004 Micheal Feather’s book “Working Effectively with Legacy Code” ([7])

P. Steinbach (IKTP) Refactoring September 30th, 2011 5 / 29



What is Refactoring?

What is Refactoring?

Definition

Refactoring is a disciplined technique for restructuring an existing body of code,
altering its internal structure without changing its external behavior.[8]

History

I 1990 PhD thesis of John Opdyke (student of GoF member Ralph E. Johnson)

I 2000 Martin Fowler’s book “Refactoring” published (standard reference, [8])

I 2004 Micheal Feather’s book “Working Effectively with Legacy Code” ([7])

P. Steinbach (IKTP) Refactoring September 30th, 2011 5 / 29



What is Refactoring and where is it used?

What is Refactoring and where is it used?

What is it?

I formal method of describing of what most people do anyhow (useful standard)

I setting up check-points to fix external behavior (with unit tests)

I rewrite/reorder internal structure of program

Test-Driven Development

I agile development technique
I coding follows 3 rules

1. write a unit test that fails
2. implementation code that makes

the test succeed
3. Refactoring

Legacy Code

I definition vague in literature

I code that needs to be changed to
make it ...

I easier to understand
I easier to modify

I dedicated Refactoring needed to
break dependencies etc. (see [7])

P. Steinbach (IKTP) Refactoring September 30th, 2011 6 / 29



What is Refactoring and where is it used?

What is Refactoring and where is it used?

What is it?

I formal method of describing of what most people do anyhow (useful standard)

I setting up check-points to fix external behavior (with unit tests)

I rewrite/reorder internal structure of program

Test-Driven Development

I agile development technique
I coding follows 3 rules

1. write a unit test that fails
2. implementation code that makes

the test succeed
3. Refactoring

Legacy Code

I definition vague in literature

I code that needs to be changed to
make it ...

I easier to understand
I easier to modify

I dedicated Refactoring needed to
break dependencies etc. (see [7])

P. Steinbach (IKTP) Refactoring September 30th, 2011 6 / 29



What is Refactoring and where is it used?

What is Refactoring and where is it used?

What is it?

I formal method of describing of what most people do anyhow (useful standard)

I setting up check-points to fix external behavior (with unit tests)

I rewrite/reorder internal structure of program

Test-Driven Development

I agile development technique
I coding follows 3 rules

1. write a unit test that fails
2. implementation code that makes

the test succeed
3. Refactoring

Legacy Code

I definition vague in literature

I code that needs to be changed to
make it ...

I easier to understand
I easier to modify

I dedicated Refactoring needed to
break dependencies etc. (see [7])

P. Steinbach (IKTP) Refactoring September 30th, 2011 6 / 29



What is Refactoring and where is it used?

What is Refactoring and where is it used?

What is it?

I formal method of describing of what most people do anyhow (useful standard)

I setting up check-points to fix external behavior (with unit tests)

I rewrite/reorder internal structure of program

Test-Driven Development

I agile development technique
I coding follows 3 rules

1. write a unit test that fails
2. implementation code that makes

the test succeed
3. Refactoring

Legacy Code

I definition vague in literature

I code that needs to be changed to
make it ...

I easier to understand
I easier to modify

I dedicated Refactoring needed to
break dependencies etc. (see [7])

P. Steinbach (IKTP) Refactoring September 30th, 2011 6 / 29



What is Refactoring and where is it used?

What is Refactoring and where is it used?

What is it?

I formal method of describing of what most people do anyhow (useful standard)

I setting up check-points to fix external behavior (with unit tests)

I rewrite/reorder internal structure of program

Test-Driven Development

I agile development technique
I coding follows 3 rules

1. write a unit test that fails
2. implementation code that makes

the test succeed
3. Refactoring

Legacy Code

I definition vague in literature

I code that needs to be changed to
make it ...

I easier to understand
I easier to modify

I dedicated Refactoring needed to
break dependencies etc. (see [7])

P. Steinbach (IKTP) Refactoring September 30th, 2011 6 / 29



Unit Testing And Test-Driven Development

Unit Testing

Definition

A method by which individual units of source code are tested to determine if they are fit
for use. A unit is the smallest testable part of an application. (from [2])

Where did it come from?

I JUnit first unit test framework in
java (written by Kent Beck and
Erich Gamma)

I since then, many ports to other
languages written (see [5] and [1])

I provides unified interface and clean
environment

I for C++, I prefer boost’s unified
testing framework ([4])

How does it work?
JUnit

<<interface>>

Test

TestSuite TestCase

*

UserTest

P. Steinbach (IKTP) Refactoring September 30th, 2011 7 / 29



Unit Testing And Test-Driven Development

Unit Testing

Definition

A method by which individual units of source code are tested to determine if they are fit
for use. A unit is the smallest testable part of an application. (from [2])

Where did it come from?

I JUnit first unit test framework in
java (written by Kent Beck and
Erich Gamma)

I since then, many ports to other
languages written (see [5] and [1])

I provides unified interface and clean
environment

I for C++, I prefer boost’s unified
testing framework ([4])

How does it work?
JUnit

<<interface>>

Test

TestSuite TestCase

*

UserTest

P. Steinbach (IKTP) Refactoring September 30th, 2011 7 / 29



Unit Testing And Test-Driven Development

Unit Testing Demonstrated

Let’s have a look at the MagVector class tests

I what to test?

1. contract of a class (its requirements)
2. how exceptions/errors are handled

I start from a clean instance (see Code Examples, page 3)

Essentials about unit testing

I important that tests run/compile quick and immediately

I minimize time to find bugs (if occuring)

I provide constant feedback to developer
(your new class in action before clients use it)

I can serve as documentation

I good IDEs have plugins that make testing very easy

I good investmenta

aif used effectively

P. Steinbach (IKTP) Refactoring September 30th, 2011 8 / 29



Unit Testing And Test-Driven Development

Unit Testing Demonstrated

Let’s have a look at the MagVector class tests

I what to test?
1. contract of a class (its requirements)
2. how exceptions/errors are handled

I start from a clean instance (see Code Examples, page 3)

Essentials about unit testing

I important that tests run/compile quick and immediately

I minimize time to find bugs (if occuring)

I provide constant feedback to developer
(your new class in action before clients use it)

I can serve as documentation

I good IDEs have plugins that make testing very easy

I good investmenta

aif used effectively

P. Steinbach (IKTP) Refactoring September 30th, 2011 8 / 29



Unit Testing And Test-Driven Development

Unit Testing Demonstrated

Let’s have a look at the MagVector class tests

I what to test?
1. contract of a class (its requirements)
2. how exceptions/errors are handled

I start from a clean instance (see Code Examples, page 3)

Essentials about unit testing

I important that tests run/compile quick and immediately

I minimize time to find bugs (if occuring)

I provide constant feedback to developer
(your new class in action before clients use it)

I can serve as documentation

I good IDEs have plugins that make testing very easy

I good investmenta

aif used effectively

P. Steinbach (IKTP) Refactoring September 30th, 2011 8 / 29



Unit Testing And Test-Driven Development

Test-Driven Development

Background

I agile development technique

I formulated by Kent Beck in 2002 ([6])

I enforces simple design and testability

A Demonstration Might Save a 1000 Words!

Adding different norms to MagVector!

P. Steinbach (IKTP) Refactoring September 30th, 2011 9 / 29



Unit Testing And Test-Driven Development

Unit Testing And Test-Driven Development: Summary

P. Steinbach (IKTP) Refactoring September 30th, 2011 10 / 29



Unit Testing And Test-Driven Development

Returning to Refactoring!

P. Steinbach (IKTP) Refactoring September 30th, 2011 11 / 29



Code Smells

What code needs to be refactored?

If it stinks, change it!

Code Smells

I simple heuristics to identify unmaintainable code

I in-class smells (in methods, not touching class interaction)

I inter-class smells (on the structure of classes themselves)

I can’t cover all (more extensive list at [3] or in the literature)

P. Steinbach (IKTP) Refactoring September 30th, 2011 12 / 29



Code Smells

What code needs to be refactored?

If it stinks, change it!

Code Smells

I simple heuristics to identify unmaintainable code

I in-class smells (in methods, not touching class interaction)

I inter-class smells (on the structure of classes themselves)

I can’t cover all (more extensive list at [3] or in the literature)

P. Steinbach (IKTP) Refactoring September 30th, 2011 12 / 29



Code Smells

What code needs to be refactored?

If it stinks, change it!

Code Smells

I simple heuristics to identify unmaintainable code

I in-class smells (in methods, not touching class interaction)

I inter-class smells (on the structure of classes themselves)

I can’t cover all (more extensive list at [3] or in the literature)

P. Steinbach (IKTP) Refactoring September 30th, 2011 12 / 29



Code Smells in-class smells

in-class smells: The obvious ones

Comments

I clarify ”why” not ”what”

I can become visual noise

I code should be readable from the first place

...

//releasing memory from ptr

delete ptr;

...

Doublicate Code

I DRY principle

I copy-and-pasting hides atomic changes

Dead Code

Delete It!a
aYou have version control to go back.

P. Steinbach (IKTP) Refactoring September 30th, 2011 13 / 29



Code Smells in-class smells

in-class smells: The obvious ones

Comments

I clarify ”why” not ”what”

I can become visual noise

I code should be readable from the first place

...

//releasing memory from ptr

delete ptr;

...

Doublicate Code

I DRY principle

I copy-and-pasting hides atomic changes

Dead Code

Delete It!a
aYou have version control to go back.

P. Steinbach (IKTP) Refactoring September 30th, 2011 13 / 29



Code Smells in-class smells

in-class smells: Naming

Type Embedded Name

I renaming is a double take here

double getDoubleValue() return myDouble;

Uncommunicative Name

Choose:

virtual Double_t GetUxmax() const

virtual Double_t GetMaximumXInUserCoords() const

P. Steinbach (IKTP) Refactoring September 30th, 2011 14 / 29



Code Smells in-class smells

in-class smells: Naming

Type Embedded Name

I renaming is a double take here

double getDoubleValue() return myDouble;

Uncommunicative Name

Choose:

virtual Double_t GetUxmax() const

virtual Double_t GetMaximumXInUserCoords() const

P. Steinbach (IKTP) Refactoring September 30th, 2011 14 / 29



Code Smells in-class smells

in-class smells: From typing addicts

Long Method

I the shorter, the easier to read

I fit on laptop screen (640x480)

Large Class

I too many member variables smell like doublicate code

Conditional Complexity

I cluttered if/else/elif statements

I switch/case statements

P. Steinbach (IKTP) Refactoring September 30th, 2011 15 / 29



Code Smells in-class smells

in-class smells: From typing addicts

Long Method

I the shorter, the easier to read

I fit on laptop screen (640x480)

Large Class

I too many member variables smell like doublicate code

Conditional Complexity

I cluttered if/else/elif statements

I switch/case statements

P. Steinbach (IKTP) Refactoring September 30th, 2011 15 / 29



Code Smells in-class smells

in-class smells: From typing addicts

Long Method

I the shorter, the easier to read

I fit on laptop screen (640x480)

Large Class

I too many member variables smell like doublicate code

Conditional Complexity

I cluttered if/else/elif statements

I switch/case statements

P. Steinbach (IKTP) Refactoring September 30th, 2011 15 / 29



Code Smells inter-class smells

inter-class smells: Changes

Shotgun Surgery

I A change results in the need to make a lot of little changes in several classes

I too tight coupling

Divergent Changes

I repeated variations of the system commonly result in changing one class repeatedly

I e.g. adding a new sorting algorithm requires rewriting sorter class every time

P. Steinbach (IKTP) Refactoring September 30th, 2011 16 / 29



Code Smells inter-class smells

inter-class smells: Changes

Shotgun Surgery

I A change results in the need to make a lot of little changes in several classes

I too tight coupling

Divergent Changes

I repeated variations of the system commonly result in changing one class repeatedly

I e.g. adding a new sorting algorithm requires rewriting sorter class every time

P. Steinbach (IKTP) Refactoring September 30th, 2011 16 / 29



Code Smells inter-class smells

inter-class smells: Messaging

Feature Envy

I Often a method that seems more interested in a class other than the one it’s
actually in

void A::alterState(const B& input)

Message Chains

double result = a.b().c().d();

I client has to use one object to get another etc.

I any change to the intermediate relationships causes the client to have to change

Middle Man

double result = a.b().c().d();

I if a class is delegating almost everything to another class

I why have the middle man at all?

P. Steinbach (IKTP) Refactoring September 30th, 2011 17 / 29



Code Smells inter-class smells

inter-class smells: Messaging

Feature Envy

I Often a method that seems more interested in a class other than the one it’s
actually in

void A::alterState(const B& input)

Message Chains

double result = a.b().c().d();

I client has to use one object to get another etc.

I any change to the intermediate relationships causes the client to have to change

Middle Man

double result = a.b().c().d();

I if a class is delegating almost everything to another class

I why have the middle man at all?

P. Steinbach (IKTP) Refactoring September 30th, 2011 17 / 29



Code Smells inter-class smells

inter-class smells: Messaging

Feature Envy

I Often a method that seems more interested in a class other than the one it’s
actually in

void A::alterState(const B& input)

Message Chains

double result = a.b().c().d();

I client has to use one object to get another etc.

I any change to the intermediate relationships causes the client to have to change

Middle Man

double result = a.b().c().d();

I if a class is delegating almost everything to another class

I why have the middle man at all?

P. Steinbach (IKTP) Refactoring September 30th, 2011 17 / 29



Refactorings

Tools

Tools to do something about it!

P. Steinbach (IKTP) Refactoring September 30th, 2011 18 / 29



Refactorings Trivial Ones

Refactorings: Trivial Ones

As we have already heard

I Delete

I Rename Method (IDEs can do that globally by one click)

I Add Parameter, Remove Parameter

Extract Field

before

class Course {

public:

List Students;

}

after
class Course {

private:

List Students;

public:

List getStudents() const;

void setStudents(const List&);

}

→ no magic, just good practice (with a name)

P. Steinbach (IKTP) Refactoring September 30th, 2011 19 / 29



Refactorings Trivial Ones

Refactorings: Trivial Ones

As we have already heard

I Delete

I Rename Method (IDEs can do that globally by one click)

I Add Parameter, Remove Parameter

Extract Field

before

class Course {

public:

List Students;

}

after
class Course {

private:

List Students;

public:

List getStudents() const;

void setStudents(const List&);

}

→ no magic, just good practice (with a name)

P. Steinbach (IKTP) Refactoring September 30th, 2011 19 / 29



Refactorings Trivial Ones

Refactorings: Extract Method

I often methods simply do too much

I extract functionality to a separate function

before

class Course {

public:

double getAverageGrade(){

...

//Compute Score

result = a*b + c;

result *= fudgeFactor;

...

};

}

after
class Course {

public:

double computeScore(int a,float b, float c, float fudge){

return (a*b + c)*fudge;

};

double getAverageGrade(){

...

result = computeScore(a, b, c, fudge);

...

};

}

P. Steinbach (IKTP) Refactoring September 30th, 2011 20 / 29



Refactorings Trivial Ones

Refactorings: Extract Class

I break one class into two

before

class Course {

private:

string name;

string locationRoom;

string locationBuilding;

...

}

after
class Course {

private:

string name;

GeoLocation location;

...

}

class GeoLocation {

private:

string Room;

string Building;

...

}

P. Steinbach (IKTP) Refactoring September 30th, 2011 21 / 29



Refactorings Trivial Ones

Refactorings: Extract Interface

I functionality of one class might be useful for others as well

before

Course

-name: String

+getName(): String

+setName(in newName:String): void

+toXML(): String

after

Course

-name: String

+getName(): String

+setName(in newName:String): void

+toXML(): String

<<interface>>

XMLConvertable

+toXML(): String

P. Steinbach (IKTP) Refactoring September 30th, 2011 22 / 29



Refactorings Trivial Ones

Refactorings: Move Method

I a class method uses more features of another class than the one hosting it

before
class Student {

public:

bool isTaking(const Course& aCourse){

return aCourse.getStudents().contains(this);

};

}

class Course {

private:

List allStudents;

public:

List getStudents(){

return allStudents;

}

}

after
class Student {

}

class Course {

private:

List allStudents;

public:

List getStudents(){

return allStudents;

}

bool isTaking(const Student& aStudent){

return allStudents.contains(this);

};

}

P. Steinbach (IKTP) Refactoring September 30th, 2011 23 / 29



Refactorings Trivial Ones

Refactorings: Replace Error Code by Exception

I a method returns a special code to indicate failure success

before
class BlackBoard {

public:

int getContainer(const String& Containername,

Container& ContainerToLoad){

...

if(notAvailable)

return -1;

else

return 0;

};

}

after
class BlackBoard {

public:

void getContainer(const String& Containername,

Container& ContainerToLoad){

...

if(notAvailable)

throw Exceptions::ContainerUnavailable();

};

}

P. Steinbach (IKTP) Refactoring September 30th, 2011 24 / 29



Refactorings Trivial Ones

Coming back to our Test-Driven Design Safari

Let’s finish our MagVector!

P. Steinbach (IKTP) Refactoring September 30th, 2011 25 / 29



Refactorings Trivial Ones

Refactorings: Replace Conditional with Polymorphism

I in order to replace switch/case statements introduce polymorphism

before
class Expert {

enum Animal { lion = 1, tiger = 2, flee =3, ... };

public:

float getEstimatedWeight(const Animal& animal){

switch(animal){

case 1:

return 80.;

case 2:

return 85.;

...

}

};

}

after
class Expert {

public:

float getEstimatedWeight(Animal* animal){

return animal.getWeight();

}

};

}

class Animal {

public:

virtual float getWeight() = 0;

}

class Lion: public Animal {

public:

virtual float getWeight(){return 80.;};

}

P. Steinbach (IKTP) Refactoring September 30th, 2011 26 / 29



Summary

Summary

Refactoring

I method catalogue how to change code effectively
→ see refactoring.com

I most Refactorings are trivial and atomic
→ exactly where bugs come from

I Unit Tests ensure that external behavior remains untouched

I is essential for Test-Driven Development

I is one reason why we have IDEs

P. Steinbach (IKTP) Refactoring September 30th, 2011 27 / 29

http://refactoring.com/catalog/index.html


Summary

Literature

[8]

[7]

[6]

P. Steinbach (IKTP) Refactoring September 30th, 2011 28 / 29



References

References

[1] http://en.wikipedia.org/wiki/list of unit testing frameworks.

[2] http://en.wikipedia.org/wiki/unit tests.

[3] http://wiki.java.net/bin/view/people/smellstorefactorings.

[4] http://www.boost.org/doc/libs/1 47 0/libs/test/doc/html/utf.html.

[5] http://www.xprogramming.com/software.htm.

[6] Kent Beck.
Test-Driven Development by Example.
Number ISBN 0321146530. Addison-Wesley Longman, 2002.

[7] Michael Feathers.
Working Effectively with Legacy Code.
Robert C. Martin Series. Prentice Hall, 2004.

[8] Martin Fowler et al.
Refactoring - Improving the Design of Existing Code.
Addison Wesley, 2000.

P. Steinbach (IKTP) Refactoring September 30th, 2011 29 / 29


	Motivation
	What is Refactoring?
	What is Refactoring and where is it used?
	Unit Testing And Test-Driven Development
	Code Smells
	in-class smells
	inter-class smells

	Refactorings
	Trivial Ones

	Summary
	References

