
Structural and Behavioral design patterns

Benedikt Hegner
(CERN)

With thanks to Jacek Generowicz

Introduction to OOAD Stefan Kluth 28

1.5 Type
Typing enforces object class such that objects

of different class may not be interchanged
Strong typing: operation upon an object must be defined
Weak typing: can perform operations on any object
Static typing: names bound to types (classes) at compile time
Dynamic typing: names bound to objects at run time
Static binding: names bound to objects at compile time
Dynamic binding: names bound to objects at run time

C++, Java: strong+static typing + dynamic binding
Python: strong+dynamic typing
Perl: weak+dynamic typing
Fortran, C: strong+static typing + static binding (except casts)

From Stefan’s slides yesterday:

One has to disentangle various ‘types’

<variable> = <value>

Variable might have a type Value might have a type

object->method

is the actual code already
known at compile time?

Strong typing:

int a = 2
string b = "2"

concatenate(a, b) # Type Error
add(a, b) # Type Error
concatenate(str(a), b) # Returns "22"
add(a, int(b)) # Returns 4

Weak typing:

a = 2
b = "2"

concatenate(a, b) # Returns "22"
add(a, b) # Returns 4

Concerns
types/values

Static typing (e.g. C++):

int a;

a = 2;

a = “foo”; # Type error

Dynamic typing (e.g. : python)

Concerns
variables/names

a = 2;

a = “foo”; # Perfectly works

Static binding:
class A{
 int doSomething(){return 1;}
};

class B : A{
 int doSomething(){return 2;}
};

A* a = new B();
a->doSomething; # returns “1”

Dynamic binding:

class A{
 virtual int doSomething(){return 1;}
};

class B : A{
 int doSomething(){return 2;}
};

A* a = new B();
a->doSomething; # returns “2”

Concerns
polymorphism

The Blackboard Pattern

Very early in the software design the LHC experiments decided
to decouple algorithms from reconstructed objects

• Modules/Algorithms create data objects
• These get stored into a common place and can be accessed by
other modules/algorithms
• The data objects are inherently dumb and can’t do any
advanced things

• The reason has been historical as previously procedures have
been operating on a Fortran COMMON blocks. And people just went
on that way.

• Only later one really understood the advantage of this idea...

Transient and Persistent data representations

GAUDI 23

���������
�

���������
�

���������
�

���������������
����������

�������

�����������

�������

�����������

�������

�������

��������������

�������

������������� �����������������

(a)

����������������
��������������

�����������
�������

���������
������������������
���������

��������

�

�

�

����
�������

�������
��

��
� �

(b)

Illustration 3.4 (a) The interaction of Algorithms with the transient data store
(b) Persistent and transient representations

Design a ‘blackboard’ to store and retrieve data

What checks or policies have to be put in so
that write actions don’t interfere with each

other?

Why is it good to decouple the algorithms from
the created data?

The Bridge Pattern

class Kettler:

 def pedals(self):
 ...

 def handlebar(self):
 ...

class VWBeetle:

 def engine(self):
 ...

 def steering_wheel(self):
 ...

class HarleyDavidson:

 def engine(self):
 ...

 def handlebar(self):
 ...

Find a way to make all
vehicles usable by the

same interface

Assume you don’t have a
chance to convince e.g.

VW to change their
beetle class

class Vehicle (Vehicle):

 def drive(self, impl):
 self.impl = impl

 def drive(self):
 <not implemented>

class Bike(Vehicle):

 def drive(self):
 self.impl.pedals()
 self.impl.handlebar()

Good example for abstraction and making
different classes interchangeable

The State Pattern
9/27/11 2:47 PMbox.svg

Page 1 of 1file:///Users/hegner/box.svg

States appear all over the place

• Often the behaviour of an object depends on what
happened before

• For example only an opened file allows you to write to it
• But we don’t care which exact steps lead to the file
being open (bulk opening, individual opening)
• We only care about the current state of the object

class Box:

 openState = OpenState()
 closedState = ClosedState()

 def __init__(self):
 self.state = self.closedState

 def close(self):
 self.state.close()

 def open(self):
 self.state.open()

 def is_empty(self):
 return self.state.is_open(self)

class OpenState:

 @staticmethod
 def close(box):
 box.state = box.closedState

 @staticmethod
 def open(box):
 print "Already open”

 @staticmethod
 def is_empty(box):
 return True

class ClosedState:

 @staticmethod
 def close(box):
 print "Already closed”

 @staticmethod
 def open(box):
 box.state = box.openState

 @staticmethod
 def is_open(box):
 return False

9/27/11 2:47 PMbox.svg

Page 1 of 1file:///Users/hegner/box.svg

class Box:

 openState = OpenState()
 closedState = ClosedState()

 def __init__(self):
 self.state = self.closedState

 def close(self):
 self.state.close()

 def open(self):
 self.state.open()

 def is_empty(self):
 return self.state.is_open(self)

class OpenState:

 @staticmethod
 def close(box):
 box.state = box.closedState

 @staticmethod
 def open(box):
 print "Already open”

 @staticmethod
 def is_empty(box):
 return True

class ClosedState:

 @staticmethod
 def close(box):
 print "Already closed”

 @staticmethod
 def open(box):
 box.state = box.openState

 @staticmethod
 def is_open(box):
 return False

9/27/11 2:47 PMbox.svg

Page 1 of 1file:///Users/hegner/box.svg

Paradox?
States are stateless!?

Design a framework to allow the usage of a local
batch farm of various computers

A user should be able to inspect, start, stop,
cancel, resubmit, ...

Give it a thought about who is responsible for
the state transition

The Facade Pattern

Sometimes you have a very complicated system, which you
want to hide from the user

• Using hot water in the shower, you don’t have to think
about switching on the boiler, opening support valves,
changes in gas mixture, switching on a fuse... (*)

• You don’t care if one component gets replaced

• In design pattern terms the simplified interface to a
complicated system is called Facade

• This concept is rather common sense and an example for
not to overrate design patterns for their ‘brilliance’

• The real name of it is just encapsulation.

(*) if you ever lived in one of the french apartments near CERN, that’s unfortunately not true

What you should take home as a message:

Think before you type!
And keep the WTF frequency low!

That’s it folks!

