

Disappearing track trigger in ATLAS for Run 3 searches

Hanyi Jang

ATLAS Group

DESY Summer student presentation

4th September 2024

Content

Introduction

- Dark matter candidate in SUSY
- Trigger system

Dataset- 2022, ATLAS experiment

pp collisions $\sqrt{s} = 13.6 \, TeV$, *integrated luminosity*: 29 fb^{-1}

Study efficiency of disappearing track trigger

Generated events- MadGraph5 ver.3.5.4, Pythia8 ver.8.311, generate signal events pp collisions $\sqrt{s} = 13.6 \, TeV$, integrated luminosity: $137 f b^{-1}$ Study gained signal events with disappearing track trigger

Introduction

Target: SUSY model – LSP(Neutralino)
Dark matter candidate

Pass through detector

- \rightarrow Use momentum imbalance
- \rightarrow Missing Transverse Energy (MET or E_T^{miss})

L1 (Hardware) – process all input \rightarrow HLT (Software) – run event reconstruction algorithm \rightarrow Store

Adjust the triggers to see new signal candidates

3

Low E^{miss}: higher bkg & difficult to reconstruct

Aaboud, Morad, et al. "Search for long-lived, massive particles in events with displaced vertices and missing transverse momentum in s= 13 TeV pp collisions with the ATLAS detector." *Physical review* D 97.5 (2018): 052012

Objective - Upgrade trigger!

L1 + HLT Trigger + Disappearing track Trigger

- Gain new signal region candidates at low MET
- Lower bkg rate \rightarrow lower MET requirement

Upgraded trigger – **Disappearing track** trigger

'tracklet' = only Pixel hits

Detector view

Aad, G., Abbott, B., Abbott, D.C. et al. Search for long-lived charginos based on a disappearing-track signature using 136 fb of pp collisions at = 13 TeV with the ATLAS detector. Eur. Phys. J. C 82, 606 (2022).

Aad, G., Abbott, B., Abbott, D.C. et al. Search for long-lived charginos based on a disappearing-track signature using 136 fb of pp collisions at = 13 TeV with the ATLAS detector. Eur. Phys. J. C 82, 606 (2022).

Upgraded trigger – Disappearing track trigger 'tracklet' = only Pixel hits **Detector view** ATLAS Fake Signal tracklet Fake **Electron & Hadron** Background tracklet Not reconstructed Muon Fully reconstructed track Muon Magnet Calorimeter SC TRT

BDT (Boosted Decision Tree)

- -Separate bkg (fake) & signal tracklet
- -12 variables (track parameters, quality of fit, number of Pixel hits etc)

Upgraded trigger – **Disappearing track trigger**

Real Data-Evaluate performance of MET trigger

μ : proxy for MET

 $\tilde{\boldsymbol{\chi}}_{1}^{+}$

Data: $Z \rightarrow \mu \mu$ events (well-understood)

- Select good events:
- Good quality muons 1)
- $0.1 < |\eta| < 1.9$ 2)
- 3) Offline Pixel hit \geq 3
- $81 < m_{\mu\mu} < 101 \, GeV$ 4)
- 5) Isolated

Aaboud, Morad, et al. "Search for long-lived, massive particles in events with displaced vertices and missing transverse momentum in s= 13 TeV pp collisions with the ATLAS detector." Physical review D 97.5 (2018): 052012

Efficiency of upgraded trigger

Aaboud, Morad, et al. "Search for long-lived, massive particles in events with displaced vertices and missing transverse momentum in s= 13 TeV pp collisions with the ATLAS detector." *Physical review* D 97.5 (2018): 052012

Efficiency of upgraded trigger

Accept more events with Potential candidates!

Apply this new efficiency to generated events!

Aaboud, Morad, et al. "Search for long-lived, massive particles in events with displaced vertices and missing transverse momentum in s= 13 TeV pp collisions with the ATLAS detector." *Physical review* D 97.5 (2018): 052012

Result - Apply disappearing track trigger

- Replace efficiency curve

Result - Apply disappearing track trigger

Number of Signal Region events for differing chargino mass

After Upgraded trigger, SR events:

- ~1.35 times increase
- Less increase for higher mass

Summary

Motivation

Search for dark matter candidate predicted by SUSY

Method

Implement disappearing track trigger (BDT)

- -Lower momentum threshold for MET
- -Increase acceptence of signals

Results

- Signal region improved ~ 35%

Thank you for your attention

Track Emulation

Decay radius

Chargino-Neutralino 1 pT

MET in different chargino masses

Chargino p_T in different chargino masses

Kinematic distribution of MET and leading jet

Data Analysis

Analysis of generated data \rightarrow Get Signals that we are interested in!

SimpleAnalysis

- online + offline
- 1) Overlap removal
- 2) Smear pT
- 3) Object reconstruction
- 4) Signal region selection

Expected number of events

• Number of events generated

Cross section × integrated luminosity = expected number of events Where, integrated luminosity = $137 f b^{-1}$

• Binning

Rescaled to: *Cross section* × #*Event generated*

Acceptance times Efficiency

How HLT was improved

ATLAS Detector

BDT Variables

BDT variables	pix4lsct0	pix4lsct1+	pix3lsct0	pix3lsct1+
p_T	0	0	0	0
$ z_0 $	0		0	0
$ d_0 $	0		0	0
χ^2/ndof	0		0	0
$\chi^2/ndof pix$	0	0	0	
p_T (refit w/o SCT)	0	0	0	0
$ z_0 $ (refit w/o SCT)		0	0	0
$ d_0 $ (refit w/o SCT)		0	0	0
$\chi^2/ndof(refit w/o SCT)$				0
refit p_T/p_T	0	0		0
refit $(\chi^2/\text{ndof})/(\chi^2/\text{ndof})$	0	0		
Nr of Pixel hits	0	0	0	0
Nr of SCT hits		0		0
Nr of Barrel hits	0		0	0
Isolation($\Delta R < 0.1$)	0	0	0	0
Isolation $(0.1 < \Delta R < 0.2)$	0	0	0	0
Fail or success(Combinatorial tracking)		0		0
Nr of BDT variables	12	12	12	15

category	number of pixel hits	number of sct hits
pix4lsct0	4	0
pix4lsct1+	4	> 0
pix3lsct0	3	0
pix3lsct1+	3	> 0

BDT distribution & cut

	Number of contributing pixel hits	BDT cut score
Category 1	4-layer tracklet	-0.1
Category 3	3-layer tracklet	0.04

BDT distribution

Renewed BDT distribution

Parton Luminosity

Efficiency of new trigger

