September 4, 2024

Charm fragmentation tuning in **PYTHA with BELLE** Cata **DESY 2024 summer student project**

Marta Razza, University of Bologna **Coach : Daniel Pitzl, DESY FH**

SuperKEKB accelerator

• e^+e^- collisions at $\sqrt{s} = 10.58$ GeV, $p_z(e^-) = +$

7 GeV and
$$p_z(e^+) = -4$$
 GeV

BELLE II detector

• Operating since 2019

KL and muon detector

Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (End-caps, inner 2 barrel layers)

String fragmentation model

color string ii)

string breaking iii)

more breaking iv)

hadronization v)

This QCD inspired model is implemented in PYTHIA with a lot of empirical parameters

D^0 and D^{*+} charm mesons

conjugate decays.

• The decays considered are: $D^0 \to K^- \pi^+$, $D^{*+} \to D^0 \pi^+$ and their respective charge

- BELLE II simulation for $c\bar{c}$
- K and π reconstructed in the tracking system
- Using particle identification for K

with a precision of 3% for real data.

Simulation parameters need to be adjusted

States observed:

- D_1^0 at 2.423 GeV, axial-vector
- D_2^{*0} at 2.463 GeV, tensor

The BELLE II simulation uses the PYTHIA event generator.

It underestimates the production of D_1^0 and D_2^{*0} .

The ratio f of D_1^0 to D_2^{*0} is well described by PYTHIA.

Pythia simulation and flavour parameters

StringFlav:mesonCvector: the relative production rate of vector/pseudoscalar mesons that contain charm quarks.

StringFlav:mesonCL1S0J1: the relative pseudovector production ratio (L=1,S=0,J=1)/pseudoscalar for charm mesons.

StringFlav:mesonCL1S1J0: the relative scalar production ratio (L=1,S=1,J=0)/pseudoscalar for charm mesons.

StringFlav:mesonCL1S1J1: the relative pseudovector production ratio (L=1,S=1,J=1)/pseudoscalar for charm mesons.

StringFlav:mesonCL1S1J2: the relative tensor production ratio (L=1,S=1,J=2)/pseudoscalar for charm mesons.

In BELLE II, PYTHIA is used to model production, fragmentation and hadronization of u,d,s,c continuum.

In PYTHIA, the relative production rates of different particle species are steered by several parameters.

The Monash 2013 tune parameters, based on LEP1 data, used by PYTHIA are the following:

- StringFlav:mesonCvector = 0.88
- StringFlav:mesonCL1S0J1 = 0.0990
- StringFlav:mesonCL1S1J0 = 0.0657
- StringFlav:mesonCL1S1J1 = 0.2986
- StringFlav:mesonCL1S1J2 = 0.2986

The following is the list of simulation parameters used by the BELLE II Collaboration:

- StringFlav:mesonCvector = 2.8
- StringFlav:mesonCL1S0J1 = 0.06Axial – vector
- StringFlav:mesonCL1S1J0 = 0.1775
- StringFlav:mesonCL1S1J1 = 0.1868
- StringFlav:mesonCL1S1J2 = 0.1836 Tensor

Pythia simulation and determination of parameters

- Iterative scan to determine the best option for the charm meson production parameters
- In terms of A/BG and the relative peak fraction f

 (D_1^0, D_1^+) StringFlav:mesonCL1S0J1 = 0.2210 (D_{2}^{*0}, D_{2}^{*+}) StringFlav:mesonCL1S1J2 = 0.4845

• With this new configuration, the ratio results:

$$\left(\frac{A}{BG}\right) \approx 9.1, \quad f \approx 0.52$$

like in the data.

*+ fragmentation spectrum

- Fragmentation variable: $z^* = p^*/p_{max}^*$ where p^* is the momentum in the center of mass frame and p_{max}^* is its kinematical limit
- For data the analysis starts at $z^* = 0.5$ where only $c\bar{c}$ contributes
- Fragmentation parameters need to be optimized

- The enhanced D_1 and D_2^* production in PYTHIA leads to feed-down for D^*
- The differential cross section for D^* is determined from:

$$\frac{d\sigma}{dz} = \frac{1}{L} \frac{dN_{gen}(z)}{dz} \approx \frac{1}{L\epsilon(z)} \frac{N_{rec}(z)}{\Delta z}$$

The detection efficiency ϵ is measured in the **BELLE II** simulation:

$$\epsilon(z) = \frac{N_{rec}(z)}{N_{gen}(z)}$$

Fragmentation in PYTHIA

- of the parton's longitudinal momentum
- PYTHIA uses the Lund-Bowler fragmentation function:

$$f(z) = \frac{1}{z^{(1+rbm^2)}} (1-z)^a \exp(-bm_T^2/z)$$

- The parameters *a*, *b*, and *r* can be varied in PYTHIA: StringZ:aLund (default = 0.68; minimum = 0.0; maximum = 2.0) Monash Tune 2013 StringZ:bLund (default = 0.98; minimum = 0.2; maximum = 2.0) StringZ:rFactC (default = 1.32; minimum = 0.0; maximum = 2.0)
- The value used by BELLE II: a = 0.32, b = 0.62 and r = 1.00
- 3D grid scan: a = [0.90; 1.30], b = [0.70; 1.10], r = [0.60; 1.20] in steps of 0.05 (~ 2000 jobs on MacProM3)

• The fragmentation function presents the probability that a parton i produces a hadron h carrying a fraction z

Differential cross section for D^{*+}

- For each grid point (a, b, r) the χ^2 of the z spectrum with measured differential cross section was computed to find the configuration that gives the best value
- Final best values:
- a = 1.25b = 0.85r = 0.70

which differ from both the Monash Tune and the BELLE II default parameters.

Conclusions

RECAP:

- Measured production of D_1^0 and D_2^{*0} mesons in BELLE II data.
- Measured the differential cross section for D^{*+} production.
- Compared to PYTHIA simulation.

RESULTS:

- The tuned production parameters in PYTHIA describe the observed yields for D_1^0 and D_2^{*0} . ullet
- •

OUTLOOK:

• A full BELLE II simulation is needed to validate the new parameters determined.

With tuned fragmentation parameters the measured differential cross section for D^{*+} is well described.

Thank you

Contact

Marta Razza, University of Bologna

marta.razza@studio.unibo.it

martarazza9@gmail.com

D meson properties

Resonance	Quark Content	Width (MeV)	\mathbf{J}^{P}		S	-		
D^0	$c\bar{u}$	< 0.001	0-	0	0	-		
D^+	cd	< 0.001	0-	0	0	Meson	Mass (MeV/c^2)	Main Decay Channe
D_s^+	$c\bar{s}$	< 0.001	0-	0	0	D^0	1864.84 ± 0.05	$K^{-}\pi^{+}, K^{-}\pi^{+}\pi^{0}, K^{-}\pi^{+}\pi^{0}$
D^{*0}	$c\bar{u}$	0.083	1-	0	1	D^+	1869.66 ± 0.05	$K^{-}\pi^{+}\pi^{+}, K^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$
D^{*+}	$c ar{d}$	0.096	1-	0	1	D^+	1968.35 ± 0.07	$\overline{K}^0 K^+, \pi^+ \pi^- \pi^+$
D_s^{*+}	$c\bar{s}$	0.07	1-	0	1	D^{*0}	2006.85 ± 0.05	$D^0\pi^0, D^0\gamma$
D_0^{*0}	$c\bar{u}$	267	0+	1	1	D^{*+}	2010.26 ± 0.05	$D^{0}\pi^{+}, D^{+}\pi^{0}, D^{+}\gamma$
D_0^{*+}	cd	267	0+	1	1	$D_1(2420)^0$	2422.1 ± 0.6	$D^{*+}\pi^-$, $D^0\pi^-\pi^+$
D_{s0}^{*}	$c\bar{s}$	< 3.8	0+	1	1	$D_{2}^{*}(2460)^{0}$	2461.1 ± 0.8	$D^{*+}\pi^{-}$, $D^{+}\pi^{-}$
D_{1}^{0}	$c\bar{u}$	27.4	1+	1	0	$D_{2}(2536)^{+}$	2535.11 ± 0.06	$D^{*+}K^0_{c}, D^{*0}K^+$
D_{1}^{+}	cd	27.4	1+	1	0	$D_{s1}^{*}(2573)^{+}$	2569.1 ± 0.8	$D^0 K^+, D^+ K^0_{\pi}$
D_{s1}^{+}	$c\bar{s}$	0.92	1+	1	0	2/2010)	2000.1 ± 0.0	
D_{2}^{*0}	$c\bar{u}$	47.3	2^+	1	1	-		
D_2^{*+}	$c ar{d}$	47.3	2^+	1	1	-		
D_{s2}^{*+}	$c\bar{s}$	17.0	2^+	1	1	_		

 z^* spectrum for D_1 and D_2^*

Cross check:

- By adjusting the parameters a, b and r, we are changing the shape of the fragmentation function.
- The best values found for D^{*+} give a too soft spectrum for the D_1 and D_2^* resonances.

• Again, the default BELLE II simulation underestimates the production rate of axial-vector and tensor mesons

Thu Aug 22 14:27:22 2024

enhanced in PYTHIA as needed by the data

• With the new configuration of charm fragmentation parameters, the production of D_{c1}^+ and D_{c2}^{*+} is also

CUSB detector at Cornell USA