Automatic Differentiation Near-Field Ptychography

Zhang Yiwei, DESY CFEL

September 4, 2024

HELMHOLTZ

Table of Contents

01 Introduction

02 Simulation and results

- structured illumination

03 Summary

Background

A high-resolution imaging method is needed

- Materials Science
- Biological Imaging
- Semiconductor Industry

Advancement of third generation synchrotrons like PETRA III excites a big interest on X-ray ptychography.

M. Holler, M. Guizar-Sicairos, E.H. Tsai, R. Dinapoli, E. Müller, O. Bunk, J. Raabe, G. Aeppli: Highresolution non-destructive three-dimensional imaging of integrated circuits, Nature 543(7645), 402–406 (2017)

Introduction — Challenges of traditional X-ray

X-ray: a high-resolution imaging method

- diffraction limit: $\frac{1.22\lambda}{D}$

- higher resolution than visible light imaging ($\lambda_{X-ray} \ll \lambda_{400-760nm}$)

Why is it challenging for X-ray to be imaged by lens?

- high quality and high NA of lens is challenging to make

Ptychography

Greek word 'ptycho' means 'fold'

Principle :

- Illumination probe scans over the specimen with sufficient overlap
- 2. Intensity of diffraction pattern is recorded
- 3. Use algorithm to reconstruct the sample and probe

Springer Handbook of Microscopy. (Springer International Publishing, Cham, 2019).

https://en.wikipedia.org/wiki/Ptychography

Conventional Algorithms

1、PIE family: mPIE, ePIE.....

2、Alternating projections scheme: DM, RAAR

Springer Handbook of Microscopy. (Springer International Publishing, Cham, 2019).

Drawbacks Of Conventional Algorithms

Inflexible: Change of the experimental condition need manual re-derivation of the calculation strategy

Gradient Descent Method

How does gradient descent actually work?

- update in the direction that reduces the loss
- Automatic differentiation to calculate $\nabla_x L(x)$

Chain rule:

$$\frac{\partial L(g_1(g_2(\dots g_n(x) \dots)))}{\partial x} = \frac{\partial L}{\partial g_n} \cdot \frac{\partial g_n}{\partial g_{n-1}} \cdots \frac{\partial g_1}{\partial x}$$

- Learning rate α : step size
- Advanced: adapt the learning rate with momentum ("ADAM")--More suitable for non-convex optimization problems

(a) Without momentum

(b) With momentum

Framework of simulation

- Randomly initialize two matrices as object and probe, respectively
- Calculate exit wavefront:

 $\Phi_i(\boldsymbol{r}) = P(\boldsymbol{r} - \boldsymbol{r}_i) \cdot O(\boldsymbol{r})$

- Propagate the exit wavefront to get the intensity patterns
- *Loss function* : *MSE* (mean squared error)

$$L(x) = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y_i}(x))^2$$

where y is amplitude of images

• Update:
$$P' = P - \alpha \frac{\partial L}{\partial P}$$
 $O' = O - \alpha \frac{\partial L}{\partial O}$

DESY. |Automatic Differentiation Near-Field Ptychography | Zhang Yiwei

How to generate digital data as ground truth for testing?

Probe size(128×128) Object size(256×256) Probe overlap:90%

Result

Initial learning rate=0.01 Iteration = 3000

Under high overlap conditions(90%), the reconstruction quality is acceptable

Result

Initial learning rate=0.01 Iteration = 3000

Under low overlap conditions(70%), the reconstruction quality becomes worse

Structured illumination – to add some diversity to the data

Reconstructed object

Why diversity is provided ?

Exit wavefront $= O(r) * P(r - r_i)$

The Fourier Shift Theorem:

 $F\{g(x - a, y - b)\} = G(f_x, f_y) \exp\left[-j2\pi(af_x + bf_y)\right]$ The intensity: $\left|G(f_x, f_y) \exp\left[-j2\pi(af_x + bf_y)\right]\right|^2 = \left|G(f_x, f_y)\right|^2$

If probe is normal as pink shows, for the overlapping region of object between two probe positions, the **intensities** of diffraction pattern have same information.

If probe is structured as blue shows, the overlapping region is illuminated by different area of probe. So it can provide more information and diversity.

Add some aberration

 $P = A \times \exp(i * \phi)$

- Where *P* is the probe, *A* is the amplitude and ϕ is the phase
- Add some aberration to phase

 Try Zernike aberration but reconstruction doesn't become better

Diffuser

Diffuser improves reconstruction

Improvement

• The overlap rate is 70%

The improvement is quite significant

Aberration with different spatial frequency components

Put a ring mask to select specific frequency components

Draw FRC(fourier ring correlation curve) of different radius of ring mask

The results are improved with more high spatial frequency components.

Summary

Ptychography:

Conventional Algorithms: PIE\projection

Gradient Descent:

- Update in the opposite direction of gradient
- Use AD to calculate gradient

Simulation result:

- Work with high overlap rate
- Bad when overlap rate is low

Structured illumination :

- diversity
- higher frequency plays an important role

Thank you

Contact

Deutsches Elektronen-Synchrotron DESY Zhang Yiwei

<u>yiwei.zhang@desy.de</u>

www.desy.de