Crosstalk Characterization of a Digital SiPM in 150 nm CMOS Imaging Technology

DESY Summer School Program project, hosted by the DESY ATLAS group

Ono Feyens Supervised by Finn King and Gianpiero Vignola

5/09/2024

HELMHOLTZ

Introduction dSiPMs and optical crosstalk

- **SiPM** (silicon photomultiplier): solid-state PMT
 - Single-photon sensitivity
 - Timing resolution, compact, insensitive to magnetic field
 - Digital → spatial information
- **Future** HEP experiments (readout scintillating fibers, 4D tracker)
- Pixel → 4 SPADs (single photon avalanche diodes), operated in Geiger-mode
 → avalanche multiplication
- Secondary photons created in avalanche process → optical crosstalk (CT)

https://doi.org/10.1016/j.nima.2018.11.119

Sensor data

Detection of noisy pixels and determination of the crosstalk probability

- Senor data: in which pixel was a photon detected
- Hitmap in dark conditions → dark count rate
 (DCR) → detection of noisy pixels

- Determination of the crosstalk probability
 - 1. Unmask only single pixel
 - 2. Unmask central pixel and 1 neighbor
 - 3. Additional dark count due to crosstalk

Camera data

Brightness and location of secondary photons

 NIR (near infrared) CMOS camera from Thorlabs → longer wavelengths → look deeper

https://www.thorlabs.com/thorprod uct.cfm?partnumber=CS135MUN

- What we are looking for:
 - Location source of secondary photons (identify noisy SPAD)
 - Identify defect in SPAD
- Experimental setup

Camera data

Data taking and processing

- → Automatized: LabVIEW
- → Remotely controlable: TeamViewer

Camera data

Data taking and processing

Corrected image = mean(lights) – mean(darks)

Brightness

The DUT

- Chip 1: 6 noisy pixels
 → looked at 3 [11,18], [12,9], [21,2]
- Camera and sensor settings:
 - Exposure time: 17500 ms / 1500 ms
 - Reperitions: 7
 - Delay time: 5 s
 - HV: 20.7 V 22.2 V in steps of 0.25 V
 - \rightarrow Overvoltage (OV) = bias breakdown voltage

Identifying the noisy SPAD

Crosstalk probability zoomed in on [21,2] Overvoltage 1.5V

DESY. | Crosstalk characterization | Ono Feyens, 5/09/2024

Idefining the noisy SPAD

Crosstalk probability zoomed in on [21,2] Overvoltage 1.5V

DESY. | Crosstalk characterization | Ono Feyens, 5/09/2024

Idefining the noisy SPAD

DESY. | Crosstalk characterization | Ono Feyens, 5/09/2024

Shape of secondary photons \rightarrow location of defect within the SPAD

Sort of a droplet shape, but seen in all measurements → probaby just a camera effect

Shape of secondary photons \rightarrow location of defect within the SPAD

U-shape, often seen at higher overvoltages, after a lot of measurements

Shape of secondary photons \rightarrow location of defect within the SPAD

U-shape, often seen at higher overvoltages, after a lot of measurements

Shape of secondary photons \rightarrow location of defect within the SPAD

U-shape, often seen at higher overvoltages, after a lot of measurements

Shape of secondary photons \rightarrow location of defect within the SPAD

U-shape, often seen at higher overvoltages, after a lot of measurements

Shape of secondary photons \rightarrow location of defect within the SPAD

U-shape, often seen at higher overvoltages, after a lot of measurements

Shape of secondary photons \rightarrow location of defect within the SPAD

U-shape, often seen at higher overvoltages, after a lot of measurements

Shape of secondary photons \rightarrow location of defect within the SPAD

U-shape, often seen at higher overvoltages, after a lot of measurements

Shape of secondary photons \rightarrow location of defect within the SPAD

U-shape, often seen at higher overvoltages, after a lot of measurements

Quantitative data

Conclusion and outlook

- The new NIR camera is well suited to detect the secondary photons
- We can determine the noisy SPAD in the pixel by looking at the CT probabilities to neighbors
- Quantitative data confirms correlatoin between brightness and CT
- A lot of systematics, not yet all under control (heating \rightarrow lose focus?)
- Have to watch out for very noisy SPADs (both in CT calculation and emission measurements)
- What is going on at high OVs?
- What happens at even higher OVs?
- Investigate systematics
- Investigate characteristics of the camera

Thank you! Questions?

Back-up slides

Secondary photon emission in avalanche process

https://repository.tudelft.nl/file/File_1833dbea-790d-4846aeff-41b19ad2dd69?preview=1 W.J Kindt PhD thesis: Geiger Mode Avalanche Photodiode Arrays

@ Gianpiero for conversion into wavelengths

Definition of the crosstalk probability

$$p_{c} = \frac{N_{c}}{N},$$
$$p_{n} = \frac{N_{n}}{N}.$$
$$p_{c \wedge n} = \frac{N_{c \wedge n}}{N}$$

$$p_x = \frac{p_{c \wedge n} - p_c p_n}{p_c (1 - p_n)}$$

The NIR camera

CS135MUN - Kiralux 1.3 MP NIR-Enhanced CMOS Camera, USB 3.0 Interface

CS135MUN -Ask a

Part Number:

Item #

Sensor Type

Imaging Area

Optical Format^a

Max Frame Rate

ADC^b Resolution

Full Well Capacity

Vertical and Horizontal

Region of Interest (ROI)

Exposure Time

Digital Binning^c

Dynamic Range

Sensor Shutter Type

Pixel Size

Read Noise

technical question Package Weight: 0.73 kg / EACH Available: 7-10 Days RoHS: RoHS Price: 1.728,51€ Add To Cart: Qty:1 Add To Cart 27.03.2020 Release Date: € Zoom **CS135MU** CS135CU CS135MUN Color CMOS NIR-Enhanced CMOS Monochrome CMOS Effective Number of Pixels 1280 x 1024 (H x V) 6.144 mm x 4.915 mm (H x V) 4.8 µm x 4.8 µm 1/2" (7.76 mm Diagonal) 165.5 fps (Full Sensor) 10 Bits Global <7.0 e⁻ RMS ≥10 000 e 0.100 ms to 59269 ms in 0.001 ms Increments 1 x 1 to 5 x 5

16 x 2 Pixels^d to 1280 x 1024 Pixels, Rectangular

>60 dB

https://www.thorlabs.com/thorproduct.cfm?partnumber=CS135MUN

Absorption depth of photons in silicon

https://www.pveducation.org/pvcdrom/materials/optical-properties-of-silicon

Overcorrection problem with too noisy SPADs (see pix [21,9])

- Difference between firt and second dark frame
 - First only camera effects
 - Second still some afterglow → overcorrecting

Too noisy pixels (see pix [21,9]) → problem in DCs & CT

- CT calculation assumes only one hit per frame
- If too noisy → multiple hits per frame, but only measure when current crosses a certain threshold, if it just stays above (as the case is for multiple hits happening fast after eachother) this is counted as one hit → DCR decreases and CT probability is overestimated in too noisy pixels

Schematic illustration of saturation effects in SPADs

Contact

Deutsches Elektronen-Synchrotron DESY Ono Feyens DESY ATLAS group ono.feyens@desy.be

www.desy.de