Higgs or sbbiH Good Old Standard Model or Something New?

DESY Summer Student Program 2024

Marco Cecca

Supervisors: Stepan Zakharov, Jacopo Malvaso, Andrea Cardini, Alexei Raspereza

Why are we interested in the CP violation?

We see our universe made almost entirely of matter

- The Big Bang should have created equal amounts of matter and antimatter
- What tipped the **balance**?
- Why did a tiny portion of matter survive? $\sim 1:10^9$

Few sources of CP violation exist already in the Standard Model: CKM, PMNS matrices

• They are significantly **insufficient** to account for the baryon asymmetry

Sakharov's solution: CP violation

Additional CP violating sources are necessary

CP violation in the Higgs sector

One possibility: CP violation in the Higgs sector!

- SM Higgs boson is **CP-even** $J^{CP} = 0^{++}$
- CP admixture couplings are still allowed experimentally

- > Why look at the tau?
 - It carries spin information of the Higgs
 - b-quarks hadronize
 - Muons cross the detectors
 - W/Z bosons have no CP-odd tree-level coupling

Yukawa Coupling and CP Violation

How to measure CP properties?

• Take a look at Lagrangian: $\mathcal{L}_{Y} = \frac{m_{\tau}}{v} (\kappa_{\tau} \bar{\tau} \tau + \tilde{\kappa}_{\tau} \bar{\tau} i \gamma_{5} \tau) H$

We need a CP-sensitive observable

> The measurement of $\varphi_{\tau\tau}$ is performed by studying the cross-section of the $H\to\tau\tau$:

$$\frac{d\sigma_{H \rightarrow \tau \tau}}{d\phi_{CP}} \propto {\rm const} \, - \, \cos{(\phi_{CP} - 2\varphi_{\tau \tau})}$$

- > CP-mixing modify the spin correlation between τ
- > The correlation carries over to the τ decay products
- $> \phi_{CP}$ can be defined as the angle between τ decay planes

CP-mixing encoded into reduced Yukawa couplings

•
$$\kappa_{\tau} = \sqrt{\mu^{\tau\tau}} \cos(\varphi_{\tau\tau})$$

• $\tilde{\kappa}_{\tau} = \sqrt{\mu^{\tau\tau}} \sin(\varphi_{\tau\tau})$

Page 4

Tau Lepton

It is the heaviest lepton and it is reconstructed

• DM 0: 1 prong $(au^{\pm} o \pi^{\pm}
u_{ au})$

based on its decay products

- DM 1: 1 prong+ π^0 ($\tau^{\pm} \rightarrow \rho^{\pm} \nu_{\tau} \rightarrow \pi^{\pm} \pi^0 \nu_{\tau}$)
- DM 10: 3 prong $(\tau^{\pm} \rightarrow a_1^{\pm} \nu_{ au} \rightarrow \pi^{\pm} \pi^{\mp} \pi^{\pm} \nu_{ au})$
- **DM 11:** 3 prong+ π^0

The Acoplanarity angle

- The CP-mixing angle arises as a phase-shift in the acoplanarity angle ϕ_{CP} distribution
- Considering the decay $H\to \tau^+\tau^-\to\pi^+\pi^-\nu_\tau\bar\nu_\tau$ in Higgs rest frame:
 - >~ Tau direction of flight $ec{p}_{ au}^{\pm}$
 - > Pion momentum $ec{p}^{\pm}_{\pi}$
- ϕ_{CP} can be defined as the angle between au decay planes

Presence of **neutrinos** in τ decay: approximated methods are needed!

Substitute \vec{p}_{τ}^{\pm} with the **Impact Parameter** of its charged decay product

Event Selection $H \rightarrow \tau \tau (\tau_{\mu} \tau_{h})$

How to select the candidates for the measurement?

- We are looking for an isolated muon and a hadronically decaying tau in the event
- **1 High Level Trigger**: at least an isolated global muon reconstructed with $p_T>24~{\rm GeV}$
- 2 Muon conditions:
 - $p_T>26~{\rm GeV}$ and $|\eta|<2.4$
 - $I_{rel} < 0.15$
 - It must match the one that fired the trigger ($\Delta R < 0.5$)
- **3 Tau conditions**:
 - $p_T>20~{\rm GeV}$ and $|\eta|<2.3$
 - It must pass a threshold for the CNN DeepTau classifiers

Event Selection $H \rightarrow \tau \tau (\tau_{\mu} \tau_{h})$

- An event is **selected** if at least a **pair** is found: they must have opposite charge and $\Delta R > 0.5$
- An event is discarded if:
- 1 b-jet veto: it contains a b-jet
- Extra lepton veto: it contains a third lepton with certain kinematics properties
- **Di-lepton veto**: it contains dilepton pairs

Kinematic variables: control plots

7.98 fb⁻¹ (13.6 TeV

Muon n

Tau n

7.98 fb=1/13.6 TeV

Drell-Yan Z → I

W + jets

W/2 MC stat uno

Data

Drell-Yan Z → I

W + jets

Data

W/M MC stat unc

> Okay agreement between Data/MC even without all the backgrounds :)

DESY. | $H \rightarrow \tau \tau$ CP measurement | Marco Cecca | DESY Summer Student, 5th September, 2024

Results for the signal $H \rightarrow \tau \tau \left(\tau_{\mu} \tau_{h} \right)$

Starting from the Monte Carlo simulation of the **unpolarized signal** we can create the decay template that encodes the **spin-correlation** for: CP-even ($\varphi_{\tau\tau} = 0$), CP-odd ($\varphi_{\tau\tau} = \pi/2$)

DESY. | $H \rightarrow \tau \tau$ CP measurement | Marco Cecca | DESY Summer Student, 5th September, 2024

Drell-Yan Background $Z \rightarrow \tau \tau$

- > The Drell-Yan process $Z \rightarrow \tau \tau$ is an irreducible background
- > The cross-section involves terms of the form $\cos (2\phi^+ - \phi_{CP})$ which go to **zero** integrating over ϕ in $[0, 2\pi] \implies$ The acoplanarity angle distribution is **flat**

How to recover the dependence on ϕ_{CP} ?

> Considering the positive beam direction \hat{z} and the τ^- direction of flight

$$\cos \alpha = \left| \frac{\hat{z} \times \vec{P}_{-}}{|\hat{z} \times \vec{P}_{-}|} \cdot \frac{\vec{R}_{-} \times \vec{P}_{-}}{|\vec{R}_{-} \times \vec{P}_{-}|} \right|$$

This discriminant can be used to split the events

DESY. | $H \rightarrow \tau \tau$ CP measurement | Marco Cecca | DESY Summer Student, 5th September, 2024

Validation of the method using DY dataset ($\mu^{\mp}\pi^{\pm}$)

> Something is missing, trying to look somewhere else...

Impact Parameter components

7.98 (b⁻¹ (13.6 TeV)

Drell-Yan Z → I

in and a server

hcand leg1 IPv

7.98 fb⁻¹ (13.6 TeV)

Drell-Yan Z → I

W + jets

Data

MC stat. unc.

Martin and

hcand leg2 IPv

0.002

0.002

WW MC stat unc

W + jets

Doto

Impact Parameter significance

Summary

- Studied a new BSM scenario related to the Higgs's CP-properties
- Followed the main steps of the tau reconstruction pipeline
- Calculated the acoplanarity angle for the signal dataset
- Looked at the validation of the model in $Z \to \tau \tau$

• Further investigation are necessary for the missing modulation in the validation dataset

Thank you for your attention

The Higgs Boson

> Main production mechanisms:

- gluon-gluon Fusion
- Vector Boson Fusion
- associated production with a W/Z
- top quark pair production

> Different decay channels:

- $H \rightarrow b\bar{b}$: 58.2%
- $H \rightarrow W^+W^-$: 21.4%
- $H \rightarrow \tau^+ \tau^-$: 6.3%
- $H \rightarrow \gamma \gamma$: 0.23%

$H \rightarrow \tau \tau$: current status

CMS Run2 result is: $\alpha^{\text{H}\tau\tau} = -1 \pm 19 (\text{stat.}) \pm 1 (\text{syst.}) \pm 2 (\text{bin-by-bin}) \pm 1 (\text{theo.})^{\circ}$ @ 68.3% CL

- > This result has a statistically-dominated uncertainty
- $> \leq 7^{\circ}$ uncertainty on $\alpha^{{\rm H}\tau\tau}$ required to probe BSM scenarios
- > Run3 campaign will double the statistics
- > We expect statistical uncertainty for Run2 + Run3 to reduce by 40%

Selection pipeline

Acoplanarity angle reconstruction - Unified notation

- > A Zero Momentum Frame ZMF is defined by two momenta and in this frame they are co-axial $\vec{P}_+ + \vec{P}_- = 0$
- > A reference vector \vec{R}_{\pm} boosted in the ZMF, which is not parallel to \vec{P}_{\pm}
- > A phase-shift of π is applied if needed

$$\begin{split} \phi_{CP} &= \begin{cases} \varphi^* & \text{if } \mathcal{O} \geq 0 \\ 2\pi - \varphi^* & \text{if } \mathcal{O} < 0 \end{cases} \qquad \qquad \varphi^* = \arccos\left(\frac{\vec{R}_{\perp}^+}{|\vec{R}_{\perp}^+|} \cdot \frac{\vec{R}_{\perp}^-}{|\vec{R}_{\perp}^-|}\right) \\ \mathcal{O} &= (\vec{R}_{\perp}^+ \times \vec{R}_{\perp}^-) \cdot \vec{P}^- \qquad \qquad \vec{R}_{\perp}^\pm = \vec{R}^\pm - (\vec{R}^\pm \cdot \vec{P}^\pm) \frac{\vec{P}^\pm}{|\vec{P}^\pm|^2} \end{split}$$

Acoplanarity angle reconstruction - Unified notation

Channel	P1	R1	P2	R2	π Phase-Shift
$\tau_{\mu,e,\pi}\times\tau_{\mu,e,\pi}$	$ec{p}_{\mu,\mathrm{e},\pi}$	$\overrightarrow{IP}_{\mu,e,\pi}$	$ec{p}_{\mu,\mathrm{e},\pi}$	$\overrightarrow{IP}_{\mu,\mathrm{e},\pi}$	-
$\tau_{\mu,e,\pi}\times\tau_\rho$	$ec{p}_{\mu,\mathrm{e},\pi}$	$IP_{\mu,e,\pi}$	${ec p}_{\pi^\pm}$	$ec{p}_{\pi^0}$	$y_{ m ho} < 0$
$ au_{\mu,\mathrm{e},\pi} imes au_{\mathrm{a}_{1}^{\mathrm{1Pr}}}$	$ec{p}_{\mu,\mathrm{e},\pi}$	$\overline{IP}_{\mu,\mathrm{e},\pi}$	${ec p}_{\pi^\pm}$	${ec p}_{\pi^0\pi^0}$	$y_{a_1^{1Pr}} < 0$
$ au_{\mu,\mathrm{e},\pi} imes au_{\mathrm{a}_{1}^{3\mathrm{Pr}}}^{\pm}$	$ec{p}_{\mu,\mathrm{e},\pi}$	$\overrightarrow{IP}_{\mu,\mathrm{e},\pi}$	$ec{p}_{\pi^\pm}$	$ec{p}_{\pi^{\mp}}$	$y_{\mathrm{a_1^{3Pr}}} < 0$
$ au_{ ho} imes au_{ ho}$	\vec{p}_{π}	${ec p}_{\pi^0}$	\vec{p}_{π}	\vec{p}_{π^0}	$y_{\rho} \cdot y_{\rho} < 0$
$ au_{ ho} imes au_{a_1^{1\mathrm{Pr}}}$	\vec{p}_{π}	${ec p}_{\pi^0}$	$ec{p}_{\pi}$	${ec p}_{\pi^0\pi^0}$	$y_{ m ho} \cdot y_{ m a_1^{1Pr}} < 0$
$ au_{ m ho} imes au_{ m a_1^{3Pr}}^{\pm}$	\vec{p}_{π}	$ec{p}_{\pi^0}$	${ec p}_{{m \pi}^\pm}$	$ec{p}_{\pi^{\mp}}$	$y_{ ho} \cdot y_{\mathrm{a}_1^{\mathrm{3Pr}}} < 0$
$ au_{\mathrm{a}_{1}^{\mathrm{1Pr}}} imes au_{\mathrm{a}_{1}^{\mathrm{3Pr}}}^{\mathrm{\pm}}$	$ec{p}_{\pi}$	$ec{p}_{\pi^0\pi^0}$	$ec{p}_{\pi^\pm}$	${ec p}_{\pi^{\mp}}$	$y_{\mathrm{a}_1^{\mathrm{1Pr}}} \cdot y_{\mathrm{a}_1^{\mathrm{3Pr}}} < 0$
$\tau_{a_1^{\rm 3Pr}}\times\tau_{a_1^{\rm 3Pr}}$	\vec{p}_{τ}	\vec{h}	\vec{p}_{τ}	$ec{h}$	-
$y_{ ho} = rac{E_{\pi} - E_{\pi^0}}{E_{\pi} + E_{\pi^0}}, y_{\mathrm{a}_1^{\mathrm{1Pr}}} = rac{E_{\pi} - E_{\pi^0\pi^0}}{E_{\pi} + E_{\pi^0\pi^0}}, y_{\mathrm{a}_1^{\mathrm{3Pr}}} = rac{E_{\pi^\pm} - E_{\pi^\pm}}{E_{\pi^\pm} + E_{\pi^\pm}}.$					

10.3390/universe8050256

Impact Parameter method

- > Used when there are one prong decays, both tau leptons decay to a single charged particle
- > The two charged particles define the ZMF
- > The tau momentum is replaced by the **impact parameter** of its charged decay product (IP)
- > The vector connecting the primary vertex (PV) to the point of closest approach (PCA) is used to approximate the tau direction-of-flight

$$\phi_{CP} = \begin{cases} \varphi^* & \text{if } \mathcal{O} \ge 0 \\ 2\pi - \varphi^* & \text{if } \mathcal{O} < 0 \end{cases} \qquad \qquad \varphi^* = \arccos\left(\vec{IP}_{\perp}^+ \cdot \vec{IP}_{\perp}^-\right) \qquad \qquad \mathcal{O} = (\vec{IP}_{\perp}^+ \times \vec{IP}_{\perp}^-) \cdot \frac{\vec{p}_p^-}{|\vec{p}_p^-|} \cdot \vec{P}_{\perp}^-$$

Drell-Yan Background $Z \rightarrow \tau \tau$

$$\begin{split} & \mathrm{d}\boldsymbol{\sigma}_{DY}/\mathrm{d}\cos\left(\boldsymbol{\theta}^{+}\right)\mathrm{d}\cos\left(\boldsymbol{\theta}^{-}\right)\mathrm{d}\cos\left(\boldsymbol{\phi}^{+}\right)\mathrm{d}\boldsymbol{\varphi}_{CP}\,\mathrm{d}E^{+}\mathrm{d}E^{-}\propto\sum_{B_{1},B_{2}=Z,\gamma}a\left(B_{1},B_{2}\right)\\ & \times\left\{V_{\tau}^{B_{1}}V_{\tau}^{B_{2}}\left[1-\left(\cos\left(\boldsymbol{\theta}^{+}\right)\cos\left(\boldsymbol{\theta}^{-}\right)+\frac{1}{2}\sin\left(\boldsymbol{\theta}^{+}\right)\sin\left(\boldsymbol{\theta}^{-}\right)\cos\left(2\boldsymbol{\phi}^{+}-\boldsymbol{\varphi}_{CP}\right)\right)\right]\right.\\ & \left.\left.\left.+A_{\tau}^{B_{1}}A_{\tau}^{B_{2}}\left[1-\left(\cos\left(\boldsymbol{\theta}^{+}\right)\cos\left(\boldsymbol{\theta}^{-}\right)-\frac{1}{2}\sin\left(\boldsymbol{\theta}^{+}\right)\sin\left(\boldsymbol{\theta}^{-}\right)\cos\left(2\boldsymbol{\phi}^{+}-\boldsymbol{\varphi}_{CP}\right)\right)\right]\right.\\ & \left.\left.\left.\left.\left(a^{B_{1}}V_{\tau}^{B_{2}}+V_{\tau}^{B_{1}}A_{\tau}^{B_{2}}\right)\left(\cos\left(\boldsymbol{\theta}^{+}\right)-\cos\left(\boldsymbol{\theta}^{-}\right)\right)\right\right\}\right. \end{split}$$

Drell-Yan Background $Z \rightarrow \tau \tau$ **Run2**

Folding procedure $\varphi_{\rm CP}$

