Formation of dark matter solar halos

DESY Summer Student programme 2024

Riccardo Sacerdoti – DESY Theory Group (Cosmology) Supervisors: Marco Gorghetto, Minyuan Jiang DESY Auditorium, Hamburg, 05 Sep 2024

HELMHOLTZ

Content

Introduction

What is Dark Matter?

Evidence of dark matter in the Universe

- Rotation velocity of the stars in the galaxies;
- High-speed, gravitationally bound clusters of galaxies;
- Gravitational Lensing;
- Observations from cluster collisions;

A lot of different candidates! See Dark Matter Lecture

Why dark matter?

- Predicted production during Early Universe
- · Axions could explain other problems, such as in QCD

How much DM is in our Solar System?

DM density in our galaxy averaged on scales much bigger than the Solar System

Loose upper bounds from Solar System ephemerides from:

- planets (arXiv: 0903.4849)
- asteroids (arXiv: 2210.03749)

From arXiv: 2306.12477 [hep-ph]

Can the Sun gravitationally capture DM?

DESY. | Formation of dark matter solar halos | Riccardo Sacerdoti, 05 Sep 2024

Can the Sun gravitationally capture DM?

DESY. | Formation of dark matter solar halos | Riccardo Sacerdoti, 05 Sep 2024

Can the Sun gravitationally capture DM?

Non-relativistic approximation

$$\phi = \frac{1}{\sqrt{2m}} \left(\psi e^{-imt} + \text{c.c.} \right) \quad \text{with } \dot{\psi} \ll m\psi$$

 \rightarrow Schroedinger-Poisson equation

$$\left(i\partial_t + \frac{\nabla^2}{2m} + \frac{\alpha}{r}\right)\psi = g|\psi|^2\psi$$

From arXiv: 2306.12477 [hep-ph]

DESY. | Formation of dark matter solar halos | Riccardo Sacerdoti, 05 Sep 2024

+ gravitational potential

$$\Phi = -\frac{GM}{r}$$

$$\alpha = GMm$$
$$\alpha_{em} = \frac{e^2}{4\pi\epsilon_0}$$

Can the Sun gravitationally capture DM?

Analogy with Hydrogen atom $(g = 0) \rightarrow$ expansion in its eigenfunctions

$$\psi(\boldsymbol{x},t) = \sum_{nlm} c_{nlm}(t) e^{-i\omega_{nlm}t} \psi_{nlm}(\boldsymbol{x}) + \int [dk] c_{\boldsymbol{k}}(t) e^{-i\omega_{\boldsymbol{k}}t} \psi_{\boldsymbol{k}}(\boldsymbol{x})$$

and a lot of calculations (and sweat)...

ULDM: coherence time $\tau_{\rm dm} = \frac{2\pi}{mv_{\rm dm}^2}$ after which uncorrelated waves: $\langle a^*(\boldsymbol{k})a(\boldsymbol{k}')\rangle \equiv (2\pi)^3 f(\boldsymbol{k})\delta(\boldsymbol{k}-\boldsymbol{k}')$ use $\langle \cdot \rangle$ over times much larger than $\tau_{\rm dm}$

From arXiv: 2306.12477 [hep-ph]

Can the Sun gravitationally capture DM?

Analogy with Hydrogen atom $(g = 0) \rightarrow$ expansion in its eigenfunctions

$$\psi(\boldsymbol{x},t) = \sum_{nlm} c_{nlm}(t) e^{-i\omega_{nlm}t} \psi_{nlm}(\boldsymbol{x}) + \int [dk] c_{\boldsymbol{k}}(t) e^{-i\omega_{\boldsymbol{k}}t} \psi_{\boldsymbol{k}}(\boldsymbol{x})$$

and a lot of calculations (and sweat)...

$$i\dot{c}_{nlm}^{(1)}(t) + \sqrt{N_{nlm}^{(0)}}\omega_{nlm}^{(1)} = ge^{i\omega_n t} \int d^3x \left|\psi^{(0)}\right|^2 \psi^{(0)}\psi_{nlm}^*$$

 $2 \rightarrow 2$ scattering processes

From arXiv: 2306.12477 [hep-ph]

Can the Sun gravitationally capture DM?

Initial state: waves + ground state 100

$$\psi^{(0)} = \sqrt{N_{100}^{(0)}} e^{-i\omega_1 t} \psi_{100} + \int [dk] a(\mathbf{k}) e^{-i\omega_k t} \psi_{\mathbf{k}}$$

1st order: $2 \rightarrow 2$ scattering processes. 5 possible diagrams:

DESY. | Formation of dark matter solar halos | Riccardo Sacerdoti, 05 Sep 2024

Dark photons (spin-1 bosons)

Can the Sun gravitationally capture DP?

DESY, | Formation of dark matter solar halos | Riccardo Sacerdoti, 05 Sep 2024

Dark photons (spin-1 bosons)

Can the Sun gravitationally capture DP?

Non-relativistic limit + gravitational potential \rightarrow

$$\Rightarrow \left(i\partial_t + \frac{\nabla^2}{2m} + \frac{\alpha}{r}\right)\psi^i = g\sum_j \left(-2|\psi^j|^2\psi^i - (\psi^j)^2\psi^{i*}\right)$$

Same as for spin-0 bosons (but more sweat)... and finally

$$i\dot{c}_{100}^{i(1)}(t) = ge^{i\omega_{1}t} \sum_{j} \int d^{3}x \left(-2 \underbrace{|\psi^{j(0)}|^{2} \psi^{i(0)} \psi_{100}^{i*}}_{k_{3}^{j}} - \underbrace{(\psi^{j(0)})^{2} \psi^{i(0)*} \psi_{100}^{i*}}_{k_{3}^{j}}\right)$$

$$j = 1, 2, 3$$

$$k_{2}^{i} \underbrace{(3.1)}_{(3.1)} 100^{i}} \underbrace{k_{2}^{j} \underbrace{(3.2)}_{(3.2)} 100^{i}}_{k_{2}^{j}} \underbrace{k_{3}^{j}}_{(3.2)} \underbrace{(y^{j(0)})^{2} \psi^{i(0)*} \psi_{100}^{i*}}_{k_{3}^{j}}}_{(3.2)} \underbrace{(y^{j(0)})^{2} \psi^{i(0)*} \psi_{100}^{i*}}_{k_{3}^{j}}}_{k_{3}^{j}}}_{(3.2)} \underbrace{(y^{j(0)})^{2} \psi^{i(0)*} \psi_{100}^{i*}}_{k_{3}^{j}}}_{(3.2)} \underbrace{(y^{j(0)})^{2} \psi^{i(0)*} \psi_{100}^{i*}}_{k_{3}^{j}}}_{k_{3}^{j}}}_{(3.2)} \underbrace{(y^{j(0)})^{2} \psi^{i(0)*} \psi_{100}^{i*}}_{k_{3}^{j}}}_{k_{3}^{j}}}_{k_{3}^{j}}}_{k_{3}^{j}}}_{k_{3}^{j}}}_{k_{3}^{j}}}_{k_{3}^{j}}}_{k_{3}^{j}}}_{k_{3}^{j}}}$$

DESY. | Formation of dark matter solar halos | Riccardo Sacerdoti, 05 Sep 2024

Dark photons (spin-1 bosons)

Can the Sun gravitationally capture DP?

But... problem! Non-zero interference (3.1)x(3.2)* complicates calculation Solution: interference from equal diagrams \rightarrow separate the culprit (j = i)

 \rightarrow 3 new diagrams \rightarrow Bose enhancement method \checkmark

DESY. | Formation of dark matter solar halos | Riccardo Sacerdoti, 05 Sep 2024

$$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \text{Dark photons (spin-1 bosons)} \\ \dot{N}_{100}^{i} = \dot{N}_{100}^{i(3.3)} + \dot{N}_{100}^{i(3.4)} + \dot{N}_{100}^{i(3.5)} \\ \dot{N}_{100}^{i(3.3)} = \frac{4}{27} \sum_{j \neq i} g^{2} \int [dk_{1}][dk_{2}][dk_{3}](2\pi)\delta(\Delta\omega)|\mathcal{M}|^{2} \times \\ & \times \left\{ f^{j}(\mathbf{k}_{1})f^{i}(\mathbf{k}_{2})f^{j}(\mathbf{k}_{3}) \\ & + N_{100}^{i}[f^{j}(\mathbf{k}_{1})f^{i}(\mathbf{k}_{2}) - (f^{j}(\mathbf{k}_{1}) + f^{i}(\mathbf{k}_{2}))f^{j}(\mathbf{k}_{3})] \right\} \\ \dot{N}_{100}^{i(3.4)} = \frac{2}{27} \sum_{j \neq i} g^{2} \int [dk_{1}][dk_{2}][dk_{3}](2\pi)\delta(\Delta\omega)|\mathcal{M}|^{2} \times \\ & \times \left\{ f^{j}(\mathbf{k}_{1})f^{j}(\mathbf{k}_{2})f^{i}(\mathbf{k}_{3}) \\ & + N_{100}^{i}[f^{j}(\mathbf{k}_{1})f^{j}(\mathbf{k}_{2}) - (f^{j}(\mathbf{k}_{1}) + f^{j}(\mathbf{k}_{2}))f^{i}(\mathbf{k}_{3})] \right\} \\ \dot{N}_{100}^{i(3.5)} = \frac{18}{27} \quad g^{2} \int [dk_{1}][dk_{2}][dk_{3}](2\pi)\delta(\Delta\omega)|\mathcal{M}|^{2} \times \\ & \times \left\{ f^{i}(\mathbf{k}_{1})f^{i}(\mathbf{k}_{2})f^{i}(\mathbf{k}_{3}) \\ & + N_{100}^{i}[f^{i}(\mathbf{k}_{1})f^{i}(\mathbf{k}_{2}) - (f^{i}(\mathbf{k}_{1}) + f^{j}(\mathbf{k}_{2}))f^{i}(\mathbf{k}_{3})] \right\} \\ \hline k_{100}^{i} = \frac{18}{27} \quad g^{2} \int [dk_{1}][dk_{2}][dk_{3}](2\pi)\delta(\Delta\omega)|\mathcal{M}|^{2} \times \\ & \times \left\{ f^{i}(\mathbf{k}_{1})f^{i}(\mathbf{k}_{2})f^{i}(\mathbf{k}_{3}) \\ & + N_{100}^{i}[f^{i}(\mathbf{k}_{1})f^{i}(\mathbf{k}_{2}) - (f^{i}(\mathbf{k}_{1}) + f^{i}(\mathbf{k}_{2}))f^{i}(\mathbf{k}_{3})] \right\} \\ \hline k_{100}^{i} = \frac{18}{27} \quad g^{2} \int [dk_{1}][dk_{2}][dk_{3}](2\pi)\delta(\Delta\omega)|\mathcal{M}|^{2} \times \\ & \times \left\{ f^{i}(\mathbf{k}_{1})f^{i}(\mathbf{k}_{2}) - (f^{i}(\mathbf{k}_{1}) + f^{i}(\mathbf{k}_{2}))f^{i}(\mathbf{k}_{3}) \right\} \\ \hline k_{100}^{i} = \frac{18}{100} \left\{ f^{i}(\mathbf{k}_{1})f^{i}(\mathbf{k}_{2}) - (f^{i}(\mathbf{k}_{1}) + f^{i}(\mathbf{k}_{2}))f^{i}(\mathbf{k}_{3}) \right\} \right\} \\ \hline k_{100}^{i} = \frac{18}{100} \left\{ f^{i}(\mathbf{k}_{1})f^{i}(\mathbf{k}_{2}) - (f^{i}(\mathbf{k}_{1}) + f^{i}(\mathbf{k}_{2}))f^{i}(\mathbf{k}_{3}) \right\} \\ \hline k_{100}^{i} = \frac{18}{100} \left\{ f^{i}(\mathbf{k}_{1})f^{i}(\mathbf{k}_{2}) - (f^{i}(\mathbf{k}_{1}) + f^{i}(\mathbf{k}_{2}))f^{i}(\mathbf{k}_{3}) \right\} \\ \hline k_{100}^{i} = \frac{18}{100} \left\{ f^{i}(\mathbf{k}_{1})f^{i}(\mathbf{k}_{2}) - (f^{i}(\mathbf{k}_{1}) + f^{i}(\mathbf{k}_{2}))f^{i}(\mathbf{k}_{3}) \right\} \\ \hline k_{100}^{i} = \frac{18}{100} \left\{ f^{i}(\mathbf{k}_{1})f^{i}(\mathbf{k}_{2}) - (f^{i}(\mathbf{k}_{1}) + f^{i}(\mathbf{k}_{2}))f^{i}(\mathbf{k}_{3}) \right\} \\ \hline k_{100}^{i} = \frac{18}{100} \left\{ f^{i}(\mathbf{k})f^{i}(\mathbf{k})f^{i}(\mathbf{k})f^{i}(\mathbf{k})f^{i}(\mathbf{k})f^{i}(\mathbf{k})f^{i}(\mathbf{k})f^{i}(\mathbf{k})f^$$

What's next?

- Typical regimes for DP solar halo formation
 - 2 possibilities:
 - symmetric initial condition
 - asymmetric initial condition
- DM solar halo <u>inside</u> the Sun (or other massive object)
 - ightarrow gravitational potential $\Phi \,\,$ \propto

depending on mass distribution $\rho_M(r)$ inside the Sun (massive object)

 $\frac{1}{r}$

Thank you. Questions?

Thank you.

Contact

Deutsches Elektronen-	Riccardo Sacerdoti
Synchrotron DESY	DESY Theory Group (Cosmology)
	Bldg.1a, Room 01/141
www.desy.de	E-mail riccardo.sacerdoti@desy.de
	riccardo.sacerdoti@gmail.com
	Linkedin: www.linkedin.com/in/riccardo-sacerdoti-05899b231

Dark photons (spin-1 bosons)
$$\langle a^{i*}(\mathbf{k})a^j(\mathbf{k}')\rangle \equiv (2\pi)^3 f^i(\mathbf{k})\delta(\mathbf{k}-\mathbf{k}')\frac{\delta_{ij}}{3}$$

Can the Sun gravitationally capture DP?

$$\mathcal{L} = -\frac{1}{4} F_{\rho\sigma} F^{\rho\sigma} - \frac{1}{2} m^2 A_{\rho} A^{\rho} + \underbrace{\frac{1}{\Lambda^4} (F_{\rho\sigma} F^{\rho\sigma})^2}_{\text{self-interaction}} \qquad \begin{array}{l} F^{\mu\nu} = \partial_{\mu} A^{\nu} - \partial_{\nu} A^{\mu} \\ \partial_{\mu} A^{\mu} = 0 \quad \text{(Lorentz condition)} \end{array}$$
$$(-\Box + m^2) A^i + \frac{8}{\Lambda^4} (\partial_{\mu} F^2) F^{\mu i} + \frac{8}{\Lambda^4} F^2 \Box A^i = 0$$
$$A^i = \frac{1}{\sqrt{2m}} \left(\psi^i e^{-imt} + \text{c.c.} \right) \quad \text{with } \partial_{\nu} \psi^i \ll m \psi^i$$

$$\left(i\partial_t + \frac{\nabla^2}{2m} + \frac{\alpha}{r}\right)\psi^i = g\sum_j \left(-2|\psi^j|^2\psi^i - (\psi^j)^2\psi^{i*}\right)$$