

Who we are

UNIVERSITÄT LEIPZIG

Mathematisches Forschungsinstitut Oberwolfach

Mathematics
Cross-Disciplinary
Infrastructure
Providers

Clusters of Excellence

- SimTech
- MathematicsMünster
- MATH+
- STRUCTURES

a

Scientific Associations and **Societies**

- DMV
- GAMM
- GOR
- EMS
- ■FhG IUK

■ WIAS

- ZIB
- MPI DCTS Magdeburg
- FIZ Karlsruhe
- MPI MIS Leipzig
- Fraunhofer ITWM
- MFO

- FU Berlin
- U Stuttgart
- LMU München
- TU München
- WWU Münster
- TU Kaiserslautern

Math

Math
$$a(u, v) = b(u)$$

$$a(u, u) \ge m||u||^2$$

Models

$$\begin{aligned} \partial_t \mathbf{u}_1 &= \nabla \cdot \mathbf{j}_1(\mathbf{u}_1, \nabla \mathbf{u}_1) \\ \partial_t \mathbf{u}_2 &= \nabla \cdot \mathbf{j}_2(\mathbf{u}_2, \nabla \mathbf{u}_2) \end{aligned}$$

Data

Documents

Software

Visualisations

3D Objects

Example: Linear Solver Ax = b

X1: Core

- Data structures for matrices and vectors
- Representation formats
- Exchange formats
- Application programming interfaces (APIs)

X2: Data

- Test cases (matrices, solutions)
- Matrix properties (meta-data)
- Persistent identifiers (PIDs)

X3: Exchange

- Benchmark framework
- Pre-defined software environments
- Workflows, continuous-benchmarking

X4: Knowledge

- Ontology of linear problems and solvers
- Link to algorithms, publications software and test-data

Examples for Services

- OpenML
- MORwiki
- ■polyDB & SmallGrp

Examples for Infrastructures

- ■zbMATH & swMATH
- Encyclopedia of Mathematics
- RADAR

Located @ Provider-Site **External** OpenAIRE Zenodo DLMF Data Services Knowledge Located **Examples for** @ZIB **Services** OpenML ■ MORwiki ■polyDB & SmallGrp **Examples for** Infrastructures ■zbMATH & swMATH Machine User Encyclopedia of Mathematics Query RADAR **Planned** Services: Data Research Knowledge ■ Benchmark Framework Repositories for Knowledge Graph of Computer Algebra Library of **Numerical Algorithms** ■ Library of Benchmark Data ■ Knowledge Graph for Statistical Analysis ■ Persistent Identifier Registry ■ Workflow and Data Modeling and Simulation

Certification Service

■ Terminology Service

Existing New Services

- Computer Algebra (OSCAR):
 - FAIR file formats; MaRDI data packaging system; FAIR Computer Algebra Workflow guidelines
- Scientific Computing:
 - Algorithm, Mathematical Model Knowledge Graph; OpenInterfaces; Benchmarking and Workflow
- Statistics/Machine Learning
 - OpenML datasets and FAIR algorithms for data-driven approaches
- Central
 - The MaRDI portal (portal.mardi4nfdi.de)
 - Teaching Lecture Notes and Slides; Research Guidelines; Help Desk

Why?

- Scientific computing focusses on algorithms. But:
 - There is currently no way of systematically searching for data associated with an algorithm
 - Where ``data´´ is
 - Articles inventing, discussing, testing, analyzing, applying ... it
 - Software implementing it
 - Benchmarks testing it
 - Problems they solve (the reverse is more interesting)
 - Required/exploited prerequisites (spd, sparse), properties (order, complexity)

What?

- Knowledge graphs are a well-established technique for representing knowledge in a graph-structured data model. In a nutshell, they represent relations between objects (triples).
- Application to scientific computing
 - Algorithms solve problems
 - Posess mathematical properties
 - Implemented in software
 - Tested by benchmarks
 - Documented in publications

What's the benefit? Get answers to...

Starting as a practitioner from a (practical) problem:

- What are the available algorithm options for my problem? (Hint: Need link to Engineering graph)
- Are the prerequisites for an algorithm satisfied by my problem? Does it exploit its properties?
- Which implementations are available? Where do I find a common analysis?
- How can I document which algorithms I used for my problem?
- Need references for all.

Starting as an algorithm developer:

- Which methods am I competing against? (keeping up with developments in vivid fields ain't easy)
- Which properties distinguish my algorithm from others?
- Which benchmarks should I run? Which implementations should I use for competing algorithms?
- Where do I find problems that used competing algorithms?
- Need references for all.

Which structure?

- The ontology formalizes this structure using predefined relations between objects.
- Which questions do you want answered?
 - Which algorithms solve emission tomography problems?
 - Which publication invented Maximum Likelihood Expectation Maximization?
 - Which software implements filtered backprojection?
 - Which benchmark tests Ordered Subset Expectation Maximization?

What does it finally consist of?

- Set of objects and relations using ontology web language (OWL) standards
 - Objects: Problem, Algorithms, Software, Benchmark, Publication, Mathematical Property
 - Hierarchy: Problems, Algorithms, Software
 - Relations: implements, implementedBy, solves, solvedBy, analyzedIn...
 (total 35 relations, but most of these with inverse, 20 actual relations)
- Our Goal: Create a curated knowledge graph for scientific computing in this ontology.

OWL Graph

OWL Graph

What is available?

- Sample knowledge graphs in two fields:
 - Numerical Linear Algebra (basic)
 - Model order reduction:
 22 problems/subproblems, 90 algorithms, 17 implementations,
 38 benchmark problems, 604 publications
- Sample open source implementation of query infrastructure and GUI
 - Django on top of Jena-Fuseki with OWL reasoner in a container setup
 - Public available

How can I use it?

- Raw graph in standard data formats (turtle, RDF, triples, ...)
- SPARQL database access
- Standardized REST/API access
 ex: return all publications that analyze MLEM (as JSON)
 ex: convenience functions for resolution of DOIs etc.
- Send natural language requests through an LLM
- Sample GUI
 relies on the API (and has minimal functionality in itself)
- Public on https://mathalgodb.mardi4nfdi.de
- Beta of unified graphs with TA4 on https://mtsr2024.m1.mardi.ovh/

Processing natural language requests with LLMs

https://www.uni-muenster.de/FB10srvi/service/openai/query.php

GUI

GUI: Guided Queries

GUI: keyword search

GUI result display

GUI result display

GUI: Invites to play around, discover, explore

How can we overcome the hen and egg problem?

- The project will succeed only with support from the communities.
- It is vital that the work of adding pieces to the graph is as simple as possible
- Workflow:
 - An initial graph for a field, formalizing the general structure (basic problems, algorithms, ...) is created by editors from the community.
 - The graph is continually updated using proposals from the community, accepted or denied by the editors.

Contributing to the knowledge graph

Contributing to the knowledge graph

Checked by editorial board

Summary

- We defined a knowledge graph for Scientific Computing
- The knowledge graph supports scientists exploring fields
- Structure and data access are open, sample implementations are based on open source standards.
- Available access levels are raw data, database access, REST API, GUI
- Sample datasets have been constructed (with only MOR being fairly wide)
- Adding data to the graph and creating a new field is easy
- Public on https://mathalgodb.mardi4nfdi.de/
- Public beta of unified graph with MathModDB on https://mtsr2024.m1.mardi.ovh/

Outlook

- Integration into larger ontology for mathematics / engineering
- More fields
- Permanent production deployment
- Community building
- Board of experts in relevant fields