
Status of Lattice QCD Use Case(s)
: From Heavy Quarks to Chiral

Condensates

PUNCH4NFDI Annual Meeting 2024

Simran Singh

(University of Bonn)

UseCase I : Learning chiral condensates with machine learning
with Frithjof Karsch (Bielefeld), Marius Neumann (Deutscher Wetterdienst) and Christian Schmidt (Bielefeld)

UseCase II : Heavy quark diffusion coefficient
with Olaf Kaczmarek (Bielefeld) , Ding-Ze Hu (DESY, Hamburg)

28.11, Bonn

Lightning introduction : Lattice Quantum Chromodynamics

QCD is strongly interacting at low energy scales -
demanding a non-perturbative approach

 Lattice QCD

d

u u

https://doi.org/10.1051/epjconf/202024509008

1. Generate configurations using MCMC from

2. Compute observables on statistically independent
configurations

3. Repeat [2,3] by varying lattice spacing and perform
continuum extrapolation ~ lattice spacing to 0

p(ϕ) ∼ e−SE
QCD

⟨O⟩ =
1
N

N

∑
n=1

O(U(n)) det M(U(n))e−SG[U(n)]

! Typical #real numbers to be updated each step ∼ 107 − 1010

2

I : Learning densities with Masked Autoregressive Flows
- Marius Neumann, Frithjof Karsch, Christian Schmidt, Simran Singh

- How : Using actual lattice simulations generate MC samples for different
 to learn

→ →
Ns, Nt, β, ml → p (ψ̄ ψ, S |Nσ, ml, β)

A ML approach to many flavor QCD M. Neumann

of measurements, performed at a large number of V-values, since $ (() is obtained via the 2D-
histogram of the action and the observable we want to reweight. Moreover, the action histograms
obtained at the di�erent V< need to have a su�ciently large overlap.

The method can be extended to reweight a probability distribution of any observable by
reweighting each bin of the discretized distribution individually. This approach is thus limited to
data sets discretized in a set of bins and only interpolates in V-direction.

0.1

0.15

0.2

0.25

0.3

0.35

0.4

4.6 4.65 4.7 4.75 4.8 4.85

Nf = 5
V = 243⇥6

ml = 0.002
0.003
0.004
0.005
0.006
0.008�

< ̄ >

0.1

0.15

0.2

0.25

0.3

0.35

0.4

4.6 4.65 4.7 4.75 4.8 4.85

Nf = 5
V = 243⇥6

ml = 0.002
0.003
0.004
0.005
0.006
0.008�

< ̄ >

Figure 3: Comparison of V-reweighting (left) and ML-reweighting (right). Data points show results obtained
from RHMC calculations in 5-flavor QCD, while the curves are obtained from the V- and ML-reweighting,
respectively.

In Figure 3 (left) V-reweighted data for the chiral condensate are shown. The reweighting is
done for the entire set of histograms at each mass, but only the expectation values are shown, to
obtain a compact plot. While this yields reasonable results for the lowest masses, for larger <;,
especially <; = 0.006, the V-reweighting obviously is over-fitting.

4. ML model

Normalizing flows are state-of-the-art tools for modeling probability distributions in physical
systems. We use a MAF (Masked Autoregressive Flow) [6] model with eight MADE (Masked
Autoencoder for Distribution Estimation) [7] blocks. MADE networks have been especially de-
signed to factorize a joint probability distribution into a product of conditional probabilities. Using
less than eight MADE blocks caused problems with fitting the double peaks, however, for fits in
the crossover region a fewer number of MADE should be su�cient. Compared to the classical
reweighting, this method has the advantage of allowing to interpolate in any parameter. In partic-
ular, there is no need for overlapping distributions of the action density and the method is able to
process continuous data. However, in order to visualize the learned probability distribution, we
need to draw a large number of samples from our model to fill a two dimensional histogram.

In the end, the model learns to transform a 2D-Gaussian distribution to “measurements” of
(k̄k, (), conditioned on the continuous parameters (#f ,<;, V). To avoid overfitting, we have
introduced penalty terms in the loss function, based on the L1- and L2-norms of the parameters
of the network, known as regularization. The regularization is applied on a per-layer basis and the

4

Neumann M (2023) PhD Thesis Universität Bielefeld

ML based -
interpolation

β
Classical -
re-weighting

β

M. Neumann et.al., PoS LATTICE2022 (2023)

- Theory : Consider a modification of QCD with 5 degenerate light quarks

- Goal : Find the phase boundary for the Chiral phase transition using Machine
Learning techniques

3

• ML Goal : Learn a probability density from examples of data

• Why :

• Use masking to implement the autoregressive property

(⃗x , ⃗y) → p (⃗x | ⃗y)
p(x1, x2 . . . xD) = p (xN |x1, . . . xN−1) p (xN−1 |x1, . . . xN−2) . . . p (x1)

OD\HU� RI� UHGXFHG� GLPHQVLRQV�� 7KH� WDVN� RI� WKH� QHWZRUN� LV� WR
UHFRQVWUXFW�WKH�LQSXW�[�DW�WKH�RXWSXW�[ƌ�XVLQJ�WKH�PDSSLQJV�K� �J�[�
�HQFRGHU��DQG�[ƌ� �I�K���GHFRGHU���ZKLFK�DW� ILUVW�PD\�VHHP�QRW�YHU\
XVHIXO�� +RZHYHU�� WR� SUHYHQW� WKH� QHWZRUN� IURP� MXVW� UHSOLFDWLQJ� WKH
LQSXW� E\� OHDUQLQJ� WKH� LGHQWLW\� IXQFWLRQ�� WKH� LQSXW� LV� SDVVHG� E\� WKH
HQFRGHU� WKURXJK� D� OD\HU� RI� UHVWULFWHG� GLPHQVLRQV� EHIRUH� EHLQJ
UHFRQVWUXFWHG� E\� WKH� GHFRGHU�� 7KH� DXWRHQFRGHU� LV� WKHQ� WUDLQHG� WR
PLQLPL]H�WKH�UHFRQVWUXFWLRQ�HUURU�XVLQJ�D�VXLWDEOH�ORVV�IXQFWLRQ

)LJ�� ������ 6FKHPDWLF� EDVLF� DXWRHQFRGHU�� 7KH� FRPSUHVVHG
UHSUHVHQWDWLRQ�K� LV� DOVR� FDOOHG� ODWHQW� YDULDEOHV�� ODWHQW� YHFWRU�� ODWHQW
VSDFH��RU�FRGH�

ZKLFK�PD\�EH�D�VLPSOH�PHDQ�VTXDUHG�HUURU��������IRU�1�GLPHQVLRQDO
UHDO�YDOXHG�LQSXW�

MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix

I : Learning densities with Masked Autoregressive Flows

MADE : M. Germain et.al., arXiv : 1502.03539

Martin Erdmann et al., Deep Learning for Physics Research,
[World Scientific, 2021]

MAF : G. Papamakarios et.al., arXiv : 1705.07057

Masking

4

I : Learning densities with Masked Autoregressive Flows

A. We test the MAF analysis on other data - F. Cuteri, O. Philipsen et.al., JHEP 11 (2021)

5

Q. How does one test the performance of ML analysis?

- Different lattice fermion action

- Same at

- Time histories available for a range of and

Nf = 5 , Nτ = 4 Nσ = {8,12,16}

ml β

training data M configurations∼ 3

I : Learning densities with Masked Autoregressive Flows

- Training done by removing all data - training time ~ 4hr 30 minutes

- Evaluations ~ 0.5 sec per 1M samples at fixed

Nσ = 12

Nσ , ml , β

- Solid lines + band: ML output

- Squares : Lattice Data

-

- 100K model evaluations

ψ̄ ψ ∼ p(ψ̄ ψ) : p(ψ̄ ψ, S)

6

I : Learning densities with Masked Autoregressive Flows

- Solid lines + band: ML
output

- Squares : Lattice Data

-

- 100K model evaluations

ψ̄ ψ ∼ p(ψ̄ ψ) : p(ψ̄ ψ, S)

- Training done by removing all data - training time ~ 4hr 30 minutes

- Evaluations ~ 0.5 sec per 1M samples at fixed

Nσ = 12

Nσ , ml , β

7

I : Learning densities with Masked Autoregressive Flows

Why is this a good candidate for a PUNCH Use Case ?

8

✓ Transparent : Time histories* of observables from Lattice QCD simulations directly available!

✓ Novel : Masked Autoregressive Flows applied for the first time to learn LQCD observables !

✓ Reusable, Reproducible and easily Modifiable !

Steps taken to make it a user-friendly Use Case

✓ (Many) Scripts and useful files available at https://gitlab-
p4n.aip.de/punch/ta4/wp3/LatticeMLUseCase

✓A detailed README on the code logic and list of codes

✓ Dockerfile and instructions to build and run containers
available

✓ Example trained models and data available !

Gauge configurations generated from LQCD simulations of
 = 2+1 at pion mass 320 MeV using SIMULATeQCD :

a multi-GPU C++ code public & published :
https://latticeqcd.github.io/SIMULATeQCD/

Nf

• Bielefeld GPU cluster
• JUWELS at GCS@FZJ
• Marconi 100 at CINECA

Computing resources
used :

*Original full workflow and related data (except
gauge configuration which will eventually be made
available via ILDG) can be found @ https://doi.org/

10.4119/unibi/2979080

PUNCH

output

To be made
available via

ILDG

II : Heavy-Quark diffusion coefficient from lattice simulations

9

- Luis Altenkort, Olaf Kaczmarek et. al., Phys. Rev. Lett. 2023, PUNCH related work : Olaf Kaczmarek, Ding-Ze Hu, Simran Singh

Analysis Toolbox : Collection of Python
tools developed at Bielefeld (Public):

https://github.com/
LatticeQCD/AnalysisToolbox

Raw Gauge configurations used to calculate
Observable of interest : chromoelectric
correlator () for various Temperatures GE

Status on running the workflow on REANA : Results of workflow

- Results from some successful runs - with different environments
- Further tested using the Jupyter Interface of REANA
- Final plot of the paper successfully generated
- Documentation available on PUNCH GitLab

Some successfully generated figure from paper

10

Work on Lattice UseCase by Ding-Ze Hu
Metadata Schema

Docker Container tested run on Compute4Punch

- Created a Docker container specifically for the Lattice use case.

- The container includes all necessary data and programs for running LQCD analysis

and generating result charts.

- Registered within the Compute4PUNCH platform, enabling the execution of the

entire LQCD analysis workflow.

11

- Designed metadata schema from DataCite - applied to use-case.
- Type A for DOI minting: Only contains the necessary information that

helps us to find and identify the information.
- Type B for users : contains information like size, format of the data, related

information (software/article/...) and description of the data (methods/

technical info/…)
- All the XML metadata records are tested to ensure that they are valid

against the schema from DataCite using xmllint tool

12

- New Use Case showing a novel application of ML to interpolate Lattice QCD
observables

- Also a TA 3.2 contribution from Bielefeld lattice group

- Available as a repository on PUNCH GitLab

- Yet to be tested on REANA and C4P

UseCase I : ML for Lattice Observables

Summary

UseCase II : Heavy Quark diffusion coefficient

- Use Case showing computation of transport coefficient using dynamical quark
simulations (from a PRL publication)

- Showcases AnalysisToolbox and SIMULATeQCD code by Bielefeld lattice group

- Available as a repository on PUNCH GitLab

- Tested on REANA

- Available as a container in the PUNCH container stacks and tested on C4P

- Metadata records generated and validated against the DataCite schema

Thank You For Your Attention

