Status of Lattice QCD Use Case(s) : From Heavy Quarks to Chiral Condensates

Simran Singh (University of Bonn)

UseCase I: Learning chiral condensates with machine learning with Frithjof Karsch (Bielefeld), Marius Neumann (Deutscher Wetterdienst) and Christian Schmidt (Bielefeld)

UseCase II: Heavy quark diffusion coefficient with Olaf Kaczmarek (Bielefeld), Ding-Ze Hu (DESY, Hamburg)

PUNCH4NFDI Annual Meeting 2024

28.11, Bonn

Lightning introduction: Lattice Quantum Chromodynamics

QCD is strongly interacting at low energy scales - **demanding** a **non-perturbative** approach

Lattice QCD

- 1. Generate configurations using MCMC from $p(\phi) \sim e^{-S_{QCD}^E}$! Typical #real numbers to be updated each step $\sim 10^7 - 10^{10}$
- 2. Compute observables on statistically independent configurations

$$\langle O \rangle = \frac{1}{N} \sum_{n=1}^{N} O(U^{(n)}) \det M(U^{(n)}) e^{-S_G[U^{(n)}]}$$

3. Repeat [2,3] by varying lattice spacing and perform continuum extrapolation ~ lattice spacing to 0

I: Learning densities with Masked Autoregressive Flows

- Marius Neumann, Frithjof Karsch, Christian Schmidt, Simran Singh

- Theory: Consider a modification of QCD with 5 degenerate light quarks
- Goal: Find the phase boundary for the Chiral phase transition using Machine
 Learning techniques
- **How** : Using actual lattice simulations \rightarrow generate MC samples for different \rightarrow $N_s, N_t, \beta, m_l \rightarrow$ to learn $p\left(\bar{\psi}\psi, S \,|\, N_\sigma, m_l, \beta\right)$

ML based β - interpolation

I: Learning densities with Masked Autoregressive Flows

- **ML Goal**: Learn a probability density from examples of data $(\vec{x}, \vec{y}) \rightarrow p(\vec{x} | \vec{y})$
- Why: $p(x_1, x_2 ... x_D) = p(x_N | x_1, ... x_{N-1}) p(x_{N-1} | x_1, ... x_{N-2}) ... p(x_1)$
- Use masking to implement the autoregressive property

Martin Erdmann et al., Deep Learning for Physics Research, [World Scientific, 2021]

MADE : M. Germain et.al., arXiv : 1502.03539

MAF : G. Papamakarios et.al., arXiv : 1705.07057

I: Learning densities with Masked Autoregressive Flows

Q. How does one test the performance of ML analysis?

A. We test the MAF analysis on other data - F. Cuteri, O. Philipsen et.al., *JHEP* 11 (2021)

1 : Learning densities with Masked Autoregressive Flows

- Training done by removing all $N_{\sigma}=12$ data training time ~ 4hr 30 minutes
- Evaluations ~ 0.5 sec per 1M samples at fixed N_{σ} , m_{l} , β

 $- \quad \bar{\psi}\psi \sim p(\bar{\psi}\psi) : p(\bar{\psi}\psi, S)$

- 100K model evaluations

 m_l values

0.075

- Solid lines + band: ML output

- Squares : Lattice Data

1 : Learning densities with Masked Autoregressive Flows

- **Training done by removing all** $N_{\sigma} = 12$ **data** training time ~ 4hr 30 minutes
- Evaluations ~ 0.5 sec per 1M samples at fixed N_{σ} , m_{l} , β

- Solid lines + band: ML output
 - Squares : Lattice Data
- $\bar{\psi}\psi \sim p(\bar{\psi}\psi) : p(\bar{\psi}\psi, S)$
 - 100K model evaluations

1 : Learning densities with Masked Autoregressive Flows

Why is this a good candidate for a PUNCH Use Case?

- ✓ **Transparent**: Time histories* of observables from Lattice QCD simulations *directly* available!
- **Novel**: Masked Autoregressive Flows applied for the first time to learn LQCD observables!
- Reusable, Reproducible and easily Modifiable!

Steps taken to make it a user-friendly Use Case

- (Many) Scripts and useful files available at https://gitlabp4n.aip.de/punch/ta4/wp3/LatticeMLUseCase
- ✓ A detailed README on the code logic and list of codes
- ✓ Dockerfile and instructions to build and run containers available
- Example trained models and data available!

II: Heavy-Quark diffusion coefficient from lattice simulations

- Luis Altenkort, Olaf Kaczmarek et. al., Phys. Rev. Lett. 2023,

PUNCH related work: Olaf Kaczmarek, Ding-Ze Hu, Simran Singh

Gauge configurations generated from LQCD simulations of N_f = 2+1 at pion mass 320 MeV using SIMULATeQCD: a multi-GPU C++ code public & published: https://latticeqcd.github.io/SIMULATeQCD/

To be made available via ILDG

Computing resources used:

- Bielefeld GPU cluster
 - **JUWELS at GCS@FZJ**
 - Marconi 100 at CINECA

PUNCH output

Raw Gauge configurations used to calculate Observable of interest : chromoelectric correlator (G_E) for various Temperatures

Analysis <u>Toolbox</u>: Collection of Python tools developed at Bielefeld (Public): https://github.com/

LatticeQCD/AnalysisToolbox

*Original full workflow and related data (except gauge configuration which will eventually be made available via ILDG) can be found @ https://doi.org/ 10.4119/unibi/2979080

Status on running the workflow on REANA: Results of workflow

Results from some successful runs - with different environments
 Further tested using the Jupyter Interface of REANA
 Final plot of the paper successfully generated
 Documentation available on PUNCH GitLab

Work on Lattice UseCase by Ding-Ze Hu

doiMinting

include

example.xml metadata.xsd

xsl_cern_RandO.xslhtml_cern_RandO.pylqcd_RandO.html

Iqcd_ms_exten_main.xml
Iqcd_ms_core_main.xml

lqcd.xml

html_cern_RandO.py lqcd_RandO.html

xsl_cern_RandO.xsl

lqcd_ms_core_main.xml

datacite-resourceType-v4.xsd

datacite-titleType-v4.xsd

datacite-relationType-v4.xsddatacite-dateType-v4.xsd

datacite-nameType-v4.xsddatacite-numberType-v4.xsd

datacite-contributorType-v4.xsd

datacite-descriptionType-v4.xsddatacite-relatedIdentifierType-v4.xsd

datacite-funderldentifierType-v4.xsd

Metadata Schema

- Designed metadata schema from DataCite applied to use-case.
- Type A for DOI minting: Only contains the necessary information that helps us to find and identify the information. \checkmark
- *Type B for users*: contains information like size, format of the data, related information (software/article/...) and description of the data (methods/technical info/...)
- All the XML metadata records are tested to ensure that they are valid against the schema from DataCite using xmllint tool

Docker Container tested run on Compute4Punch

- Created a Docker container specifically for the Lattice use case.
- The container includes all necessary data and programs for running LQCD analysis and generating result charts.
- Registered within the Compute4PUNCH platform, enabling the execution of the entire LQCD analysis workflow.

Summary

UseCase I: ML for Lattice Observables

- **New Use Case** showing a novel application of ML to interpolate Lattice QCD observables
- Also a TA 3.2 contribution from Bielefeld lattice group
- Available as a repository on PUNCH GitLab
- Yet to be tested on REANA and C4P

UseCase II: Heavy Quark diffusion coefficient

- **Use Case** showing computation of transport coefficient using dynamical quark simulations (from a PRL publication)
- Showcases AnalysisToolbox and SIMULATeQCD code by Bielefeld lattice group
- Available as a repository on PUNCH GitLab 🗸
- Tested on REANA V
- Available as a container in the PUNCH container stacks and tested on C4P \checkmark
- Metadata records generated and validated against the DataCite schema

Thank You For Your Attention