Computing and Data Management – KET perspective –

- Overview
- Data management in HEP
- Opendata & FAIR
- ErUM-Data

Overview

- HEP computing clearly dominated by LHC collaborations, though of course substantial other activities
 - ongoing experiments (Belle II, ..)
 - plans for future colliders (FCCee, ILC/CLIC, ...) w/ Key4hep-Ecosystem
 - many legacy experiments (Tevatron, Hera, LEP, ...)
 - ... and theory groups.
- LHC
 - Planned until 2041 – just half-way today
 - 85% of data yet to come...

Operations 15 years of operations (since 2009): Phase 0 and Phase I in 3 phases 15 years of future High Luminosity operations: Phase II

LHC computing evolution

- Started with rather strict and hierarchical distributed structure (Tier-0/1/2, Monarc model)
- Strict reqts on setup, services, Grid middleware, OS environment, ...

LHC computing evolution

- Started with rather strict and hierarchical distributed structure (Tier-0/1/2, Monarc model)
- Strict reqts on setup, services, Grid middleware, OS environment, ...
- Over time restrictions got released
 - Better networks
 - Containers, cvmfs
 - Opportunistic resources

LHC computing evolution

- Started with rather strict and hierarchical distributed structure (Tier-0/1/2, Monarc model)
- Strict reqts on setup, services, Grid middleware, OS environment, ...
- Over time restrictions got released
 - Better networks
 - Containers, cvmfs
 - Opportunistic resources
- Today rather mixed setup using also
 - HPCs (NHR, EuroHPC, ...)
 - Cache-only sites
 - Clouds, Boinc, ...

Ongoing Transition to NHR/HGF for DE LHC Computing (ATLAS+CMS)

- Tier-2s at universities (AC, FR, Goe, M, Wup) will be (largely) phased out
 - around 30% of DE ATLAS&CMS computing capacity
- Use CPU resources at NHR centres to replace Uni-T2 CPUs
 - Currently NHR sites: Horeka/KIT, Emmy/Goe, Claix/AC
 - all co-located at universities with active T1/2 site and HEP group
- Storage to be concentrated at large HGF data centers (GridKa@KIT and Desy-HH)
- transition phase from 2025 to ~2030
- Migration on track but many challenges to get all required services setup and fully operational
 - specific setup/restrictions at each site

Data Management in HEP - ** RUCIO

- Rucio evolved into 'de-facto' HEP standard for DDM
- Used by ATLAS, CMS, Belle II
 - and many more groups from other communities
- Supports many protocols
 - webdav, xrootd, S3, gridftp, ...
- And storage technologies
 - dCache, CTA, EOS, Xroot, ...
- Evolution from community-specific protocols and formats (SRM, gridftp, dcap, root) to common standards (webdav/http, S3, hd5, parquet, ...)

DDM challenge HL-LHC

- Massive increase of data-rate for HL-LHC poses substantial challenge
- Many ongoing efforts to reduce data-volume
 & event-size, adapt analysis model, etc.
- 'data-carousel' is interesting approach to have larger share of data on tape
 - Factor 5-10 cheaper wrt size and power consumption
 - But random access of O(1 GB) files on O(20 TB) tape kills tape service
 - 'Smart writing and smart reading' absolutely critical
 - Requires integrated&optimized
 Tape+DDM+WFMS systems

HEP Open Data

- Excellent talk by J. Boyd on Cern Open Data in PunchLunch last Thursday
- Strong connection between Open Data and Data Preservation
 - DPHEP Collaboration HEP wide initiative founded in 2008
 - FAIR principles equally important for preservation and open access

- DPHEP defines four levels, adopted by CERN OpenData policy
 - 1) Scientific publications and associated additional data Regularly done since many years (HepData, Rivet, ...)
 - 2) Data for education and outreach Many data samples and tutorials available (CERN Open Data, Masterclasses, ...)
 - 3) Reconstruction level data useful for further event-level analysis Delicate part ...
 - 4) RAW data not considered feasible / useful for usage outside of collaboration

Level 3 data

- Reconstruction level data in principle sufficient for large fraction of analyses
- Concerns about ownership, resources, effort, ...
- Basic agreement among 4 the LHC collaborations:

	ALICE	ATLAS	CMS	LHCb
Fraction of data released in: 5 yrs (6 yrs for CMS)	10%	25% (but limiting to <20% of the total data at that time)	50% (but limiting to <20% of the total data at that time)	50%
Fraction of data released in: 10 yrs	50%	50% (but limiting to <20% of the total data at that time)	100% (but limiting to <20% of the total data at that time)	100%
End-of- Collaboration	100%	100%	100%	100%

HEP Open Data and FAIR?

- ~ok for LHC experiments
 - Agreed on common policy
 - Resources provided by collaborations and CERN
- Smaller ongoing experiments Belle II, small LHC & non-LHC expts, ...
 - Discussions in progress hope LHC open data policy sets example
- Huge legacy of previous experiments Petra, LEP, SLC, Hera, Tevatron, ...
 - Strong incentive to preserve data for further analysis
 - Several examples of re-use
 - Practical status rather mixed
 - Expertise about to disappear in many cases (LEP, Hera, ...)
- Big issues are resources and funding

2023: Experiments Data Preservation Status

Laboratory/ Collider	Experiment	Data taking period	Preservation Level	Data Volume	Present status	Coll
DESY/PETRA	JADE	1979–1986	4	1 TB	Analysis running on preserved data; migrated from DESY to MPP	4
CERN/LEP	ALEPH,DELPHI,OPAL L3	1989-2000	4 3/4	0.5 PB	Analysis running on preserved data	3/4
DESY/HERA	H1, ZEUS	1992 – 2007	4 3/4	0.5 PB 0.2 PB	Analysis running on preserved data	3
SLAC/PEP II	BABAR	1999–2008	4	2 PB	Analysis running on preserved data; migrated from home lab to different centers	4
KEK/KEKB	Belle I	1999-2010	4	4 PB	Analysis running on preserved data; Compatible with Belle II computing	2
	DØ		4	8.5 PB		Λ
FNAL/TeVatron	CDF	1983–2011	4	9 PB	Archived on tapes	4
BNL/RHIC	PHENIX	2000–2016	3	25 PB	Analysis running on preserved data	3
FNAL/v-beam	Minerva	2010–2019	3	10 TB	Analysis running	2
IHEP/BEPCII	BESIII	2009–2030	4	6 PB	Collecting and analyzing data	1
CERN/LHC	ALICE, ATLAS, CMS, LHCb	2010-2040	3 or 4	O(1EB)	Collecting and analyzing data	1

C. Diaconu, DPHEP@CHEP24

HEP and ErUM-Data

- **DIUM** project (2021-2025) within ErUM-Data important to develop, test and deploy critical tools&services for HEP computing
 - COBalD/TARDIS, Auditor, XCache, analysis technologies, ...
 - Not just for opportunistic resources but crucial for NHR/HPC integration
 - Also PUNCH services (Compute4punch, ...) building on these
- Next round of ErUM-Data call proposals in preparation (deadline Jan 15, 2025)
 - Federated Infrastructures of particular relevance building on FIDIUM Planned projects with DE HEP involvement:
 - Sustainable Federated Compute Infrastructures
 - Distributed Storage
 - Analysis Facilities
 - Software & Algorithms also strong HEP interest
 - Research Data Management ??

Summary

- Clear evolution & trend towards common standards, services & infrastructures
 - open data policies, FAIR RDM
 - NHR sites, EuroHPC
 - Community overarching projects
 - in DE: PUNCH4NFDI, Erum-Data, DIG-UM
 - and EU: JENA, Spectrum
 - Many synergies and mutual benefit
 - Combined impact of communities potentially important to achieve common standards for shared infrastructures – NHR, EuroHPC
- Large scope to further optimize use of Open Data at levels 1 & 3
 - combine data from different communities
 - support & incentive for small/legacy experiments
 - projects such as PUNCH4NFDI crucial for further progress