

DESTINY

A showcase for a FAIR data repository for stellar flyby simulations

PUNCH4NFDI Annual Meeting 2024

Frank W. Wagner, Susanne Pfalzner, and Marco Bischoff

Jülich Supercomputing Centre, Forschungszentrum Jülich (FZJ), Jülich, Germany

WHAT ARE STELLAR FLYBYS?

- rayitational encounters between two stars, where one star passes close to another star, perturbing the orbits of the surrounding disk of minor bodies
- > can be modelled using numerical N-body simulations
- observational evidence that stellar flybys do occur

Cuello, Menard, & Price: EPJP, 2023

Source: DESTINY.fz-juelich.de

THE FLYBY THAT SHAPED THE SOLAR SYSTEM

- > extensive parameter study:
- **≻6000** *N*-body simulations on supercomputers
- ➤ varying periastron distance, mass of perturber, inclination, and angle of periastron
- ➤ looking for the perfect match to observed TNO

Perturber mass: 0.8 M_{sun}

Perihelion distance: 110 AU

Pfalzner, Govind, & Portegies Zwart: Nature Astronomy, 2024

Credit: W. Fraser, National Research Council of Canada

THIS SPECIFIC FLYBY PREDICTS ...

Credit: RubinObs/NOIRLab/SLAC/NSF/DOE/AURA

- More objects beyond 60 AU
- More high inclination objects
- More retrogrades
- > Clustering in certain areas

Rubin Observatory, conducting sky surveys starting from August 2025, will provide almost immediate tests

Essential to preserve simulation data

SIMULATION DATA IN ASTROPHYSICS

Large simulations collaborations sometimes fulfil these criteria already, but often you hear:

"I have to get my paper out, not my data for others to scoop me."

> "Are they even serious, should I publish PBs of data?"

"I have no time for this nonsense, I need to work."

Current situation; a few lighthouse projects

zenodo.org

dace.unige.ch

DESTINY

Database for the effects of stellar encounters on disks and planetary systems

https://results.punch4nfdi.de

open-data initiative for astrophysical N-body simulations of stellar flybys

DESTINY ...

- > contains about 6000 simulations
- covers a wide parameter space
- > provides visualisation tools for data analysis

DESTINY

DESTINY (Database for the Effects of STellar encounters on disks and plaNetary sYstems) is an open-access data portal that provides resources for...

URL https://destiny.fz-juelich.de/

Access Open

Tags Planetary system dynamics, Astrophysics, Astronomy, Database

Result data

https://destiny.fz-juelich.de/datasets

- raw simulation data available for download
- > HDF5 hierarchical data format
- > thoroughly documented
- > tools for plot generation available

Visualisation and analysis

https://destiny.fz-juelich.de/plot-finestudy

Forschungszentrum

DESTINY

Database for the effects of stellar encounters on disks and planetary systems

- > Flask-based frontend
- Pandas for data processing
- > Matplotlib for data visualisation
- > student project

Credit: M. Bischoff

SUMMARY AND OUTLOOK

- > DESTINY: a FAIR data repository for stellar flyby simulations
- > Doable, even for small teams

To do:

- > Publish source code of *N*-body integrator
- > Persistent identifier (PID) for shared datasets
- > Integration of further databases

