Accounting of HPC resources with AUDITOR

Michael Boehler (Albert-Ludwigs Universität Freiburg (DE)), et al.

Introduction

- AUDITOR is an multi purpose accounting ecosystem
- Suitable for accounting resources combined e.g. via CobalD/TARDIS

Overview

Collectors

- Obtain accounting data from sources
 Send data as records to AUDITOR
 - **AUDTOR**
- Stores records in PostreSQL DB
 - record_id (String, unique)
 [meta] (HashMap[String → [String]])
 - [components] (Array)
 - name (String)amount (Integer)
 - [scores] (Array)
 - * name (String) * value (Float)
 - start_time (Datetime, UTC)
 - stop_time (Datetime, UTC)
 runtime (Integer, seconds, output-only)
- Allow access via REST

Plugins

- Request data from AUDITOR
- Take action based on stored info

3 Use Cases

1. Replace EGI Accounting by AUDITOR Pipeline

use case: DE Tier-1 @ KIT replaced APEL client by AUDITOR

2. Steer the priority of Batch System based to provided resources

use case: ATLAS Tier-3 @ UniFR integrates HPC resources and steers priority by provided resources of contributing groups

3. Collect Accounting data (from several source)

→ create combined report

use case: ATLAS Tier-3 @ UniFR integrates HPC resources, accounting of HPC done by TARDIS Collector, of ATLAS Tier-3 s by Slurm Collector, combined plots created via pyauditor client in jupyter notebook (few lines of code)

References: