NPOD simulation studies update

Raquel Quishpe

July 8^{th} , 2024

Double dump W+Pb configuration

- Dump geometry:
 - Tungsten dump, radius 20 cm, length 1 m
 - Lead dump wrap, radius 50 cm, length 1m
 - Enclosing concrete wall
- G4 v10.06.p01
- Physics list: QGSP_BERT_HP
- Simulated a total of 10 BXs

Double dump W+Pb configuration Background: neutrons and photons

Double dump W+Pb configuration Background: other long lived particles

Beam dump with magnetic field

- The Iron cylinder is supposed to be magnetized and serves as a source of the uniform dipole field, with By = 1.5T, cannot be more, probably should be less.
- Its thickness is not well clear, it should be small, but sufficient to create the field in the tungsten. So 100 mm here is just a guess.

1000

150

Magnetised dump configuration

 Simulated **2BX** with W dump of radius 20cm wrapped in Pb of radius 50cm, and distance to BSM detector of 1m

Photons and Neutrons

Karlsruher Institut für

Photons: vtxx vs. vtxz

(150 xx 10(

50

0

-50

-100

-150

vtxx [mm]

150

100

50

0

-50

-100

-150

Photons: vtxy vs. vtxz

Raquel Quishpe (raquel.quishpe@kit.edu)

Neutrons: vtxx vs. vtxz

Neutrons: vtxy vs. vtxz

[uu] 150 xtv 100

50

0

-50

-100

-150

[mm] ²⁰⁰ 15

50

0

-50

-100

-150

-200

Raquel Quishpe (raquel.quishpe@kit.edu)

Neutrons: x vs. y

Raquel Quishpe (raquel.quishpe@kit.edu)

Other particles

10²

10³

10³

Number of particles above 0.5 GeV

	1	2	3	4
Neutrons	157.5	112.5	142.5	0
Photons	7.5	0	0	0
Charged	7.5	30	60	0

Comments

- The double dump design (W+Pb) supresses more the background coming from neutrons and photons
- No significant background coming from charged particles. It can be handled with a magnet
- In the magnetised dump configuration, there is a significant difference on the number of photons on (1) vs (3) above 0.5 GeV. The photons seen in (1) are barely above 0.5 GeV, and originate before the magnetic field begins. Could be verified with more statistics

Backup

Present implementation of the beam dump

Beam dump with magnetic field

- The Iron cylinder is supposed to be magnetized and serves as a source of the uniform dipole field, with By = 1.5T, cannot be more, probably should be less.
- Its thickness is not well clear, it should be small, but sufficient to create the field in the tungsten. So 100 mm here is just a guess.

1000

150

Previous results - no magnet G4 with BSM detector with R=1m

No magnet (previous results, 2BXs)

X-Y cut with calice ecal geometry

No magnet (previous results, 2BXs)

