CQTA seminar 18.07.2024

Search for variation of fundamental constants with atomic clocks: Towards a highly charged ion clock

Speaker: Luis Hellmich, DESY Zeuthen, HU Berlin

Quantum sensing group Prof. Dr. Steven Worm Prof. Dr. Cigdem Issever Dr. Ullrich Schwanke Dr. Yang Yang Lakshmi P. Kozhiparambil Sajith Jonas Kramer

- Atomic clocks principle and characteristics
- Why highly charged ion clocks?
- How to detect variations of the fundamental constants with clocks
- Planned experimental setup
- What are theoretical motivations for variation of the fundamental constants? \rightarrow Scalar fields
- What physical phenomena could the scalar field represent?
 - Dark matter
 - Dark energy

- Our experiment aims to measure a temporal variation of the finestructure constant α
- Many different approaches to test time-variations in α
- Are physics the same everywhere and for all times in the universe?
- Energy running of couplings

 → why not also in time?

$\dot{\alpha}/\alpha ~(yr^{-1})$	Redshift	Method
$< 0.5 \ \mathrm{x} \ 10^{-16}$	0.15	Oklo natural nuclear reactor
$< 3.4 \ {\rm x} \ 10^{-16}$	0.45	¹⁸⁷ Re decay in meteorites
$< 10^{-16}$	0.2-3.7	Spectra of distant quasars
$< 10^{-19}$	0	Clock comparisons

C. Will, Living Rev Relativ. 9: 3, 2006

Evolution of atomic clocks

- Today one of the most precise measurement devices
- Current best clocks have fractional frequency uncertainty of $\Delta f/f \approx 10^{-18}$
- High-precision clocks used to test fundamental physics

Testing fundamental physics with atomic clocks

Testing Einstein's equivalence principle, in particular local Lorentz and position invariance Variation of fundamental constants might change clock frequency. Possibility to test many branches of high energy physics

Atomic clocks – working principle

Frontiers of Quantum Mechanics conference, Bad Honnef, 2024

Clock characterization

 $\textbf{Stability} \rightarrow \textbf{Statistical uncertainty} \rightarrow \textbf{Quantum projection noise}$

Accuracy \rightarrow Systematic uncertainty \rightarrow Blackbody radiation, Doppler shifts, EM-effects, etc.

Clock characterization

Stability \rightarrow Statistical uncertainty \rightarrow Narrow optical transitions, many atoms, long operation times

Accuracy \rightarrow Systematic uncertainty \rightarrow Low sensitivity to external fields

1)

Why highly charged ions?

Highly charged ions

 \rightarrow Strong binding energy of electrons to nucleus \rightarrow Suppression of systematic shifts

Second-order Stark shift	$\sim 1/Z_a^4$
Blackbody shift	$\sim 1/Z_a^4$
Second-order Zeeman shift	suppressed ^a
Electric quadrupole shift	$\sim 1/Z_a^2$
Fine structure	$\sim Z^2 Z_a^3/(Z_{\rm ion}+1)$
Hyperfine A coefficient	$\sim Z Z_a^3 / (Z_{\text{ion}} + 1)$

+ High sensitivity to variations of α

Berengut et al., PRA 86, 022517 (2012)

https://gsnet.org.uk/highly-charged-ion-clock/

Clock sensitivity to variation of fundamental constants

 $\langle \rangle K$

- Energy levels depend on α with relativistic corrections $F_{rel}(\alpha)$ \rightarrow Complicated!
- Transition frequency can very generically be parametrized by α and sensitivity coefficient K
- How do we know the value of K?
 - \rightarrow Atomic spectra calculations AMBiT, Flexible atomic code (FAC)
 - J. Berengut et al., arXiv:1805.11265

M. Gu, Can. J. Phys. 86: 675-689 (2008)

$$\nu = \nu(\alpha) = \nu_0 \alpha^{-1} \implies \frac{1}{d\alpha} = K \frac{1}{\alpha}$$
$$\Rightarrow \frac{d\nu}{\nu} = K \frac{d\alpha}{\alpha}$$
$$E(\alpha) = E_0 + q \left[\left(\frac{\alpha}{\alpha_0} \right)^2 - 1 \right]$$
$$q = \frac{E(\delta) - E(-\delta)}{2\delta}$$
$$K := \frac{2q}{E_0}$$

d
u

 $\nu(\alpha)$

Which ion to use?

Demands on Ion:

- narrow optical transition
 → Level crossing
- High sensitivity to α -variations
- Ideal: Cooling + readout transition

$$q \sim I_n \frac{(Z\alpha)^2}{n} = \frac{Z_a^2}{2n^2} \frac{(Z\alpha)^2}{n} \longrightarrow \qquad K := \frac{2q}{E_0}$$

energy

charge state

Kozlov et al., Rev. Mod. Phys 90, 045005 (2018)
J. C. Berengut et al., Phy Rev A 86, 022517 (2012)

Candidate ion: Cf¹⁵⁺/Cf¹⁷⁺

- $\begin{array}{c} \text{Estimated } \mathsf{K}_{\alpha} : & \bullet \\ \textbf{C} \mathbf{f}^{15+} \mathop{\rightarrow} \mathsf{K}_{\alpha} \textbf{=} \textbf{47} \\ \textbf{C} \mathbf{f}^{17+} \mathop{\rightarrow} \mathsf{K}_{\alpha} \textbf{=} \textbf{-43} \end{array}$
- Comparison: $Yb^+ \rightarrow K_{\alpha}$ = -5.95 $Sr \rightarrow K_{\alpha}$ = 0.06
- Estimated accuracy: σ_{sys}~ 10⁻¹⁹
- Spectroscopy will be done soon at MPIK in Heidelberg in collaboration with J.Crespos group → DESY members: Lakshmi K. Sajith + Yang Yang

S. G. Porsev et al., Phy. Rev. A 102, 012802 (2020)

Barontini et al., EPJ Quantum Technol. 9, 12 (2022)

Highly charged ion clock

Planned experimental setup

Estimated performance

- Atomic clocks principle and characteristics
- Why highly charged ion clocks?
- How to detect variations of the fundamental constants with clocks
- Planned experimental setup
- What are theoretical motivations for variation of the fundamental constants → Scalar fields
- What physical phenomena could the scalar field represent
 - Dark matter
 - Dark energy

Many well-motivated ideas – we are interested in the effective low energy coupling to the standard model fields

QED Lagrangian

$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi - q\bar{\psi}\gamma^{\mu}\psi A_{\mu} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

Adding a scalar field which couples to photon and electron fields

$$\mathcal{L}_{\phi} = (\partial_{\mu}\phi)(\partial^{\mu}\phi) - V(\phi) - g\phi\bar{\psi}\psi + \frac{q'\phi}{4}F_{\mu\nu}F^{\mu\nu}$$

$$\mathcal{L} \supset -\frac{1}{4} (1 - (\kappa \phi)^n d_{\gamma}^{(n)}) F_{\mu\nu} F^{\mu\nu} - \underline{m_e} (1 + (\kappa \phi)^n d_{\underline{m_e}}^{(n)}) \bar{\psi} \psi$$

$$\kappa^n d_i^{(n)} = \frac{1}{\Lambda^n} \qquad \kappa = \sqrt{4\pi G} = \frac{1}{\sqrt{2}M_{Pl}}$$
D. Kimball, The Search for Ultralight Bosonic Dark Matter, 2023

$$\mathcal{L} \supset -\frac{1}{4} (1 - (\kappa \phi)^n d_{\gamma}^{(n)}) F_{\mu\nu} F^{\mu\nu} - m_e (1 + (\kappa \phi)^n d_{m_e}^{(n)}) \bar{\psi} \psi$$
$$A'_{\mu} = (1 - (\kappa \phi)^n d_{\gamma}^{(n)})^{-1/2} A_{\mu}$$

$$q\bar{\psi}\gamma^{\mu}\psi A'_{\mu} = q(1-(\kappa\phi)^n d^{(n)}_{\gamma})^{-1/2}\bar{\psi}\gamma^{\mu}\psi A_{\mu}$$

φ-dependent expression for fine-structure constant

$$\alpha(\phi) = \frac{q_{eff}^2}{4\pi} = \alpha \ (1 + (\kappa\phi)^n d_{\gamma}^{(n)})$$

$$\alpha(\phi) = \alpha_0 \left(1 + (\kappa\phi)^n d_{\gamma}^{(n)}\right)$$

$$\alpha_S(\phi) = \frac{g_{eff}^2}{4\pi} = \alpha_S \left(1 + (\kappa\phi)^n d_g^{(n)}\right)$$

$$m_e(\phi) = m_{e,0}(1 + (\kappa\phi)^n d_{m_e}^{(n)})$$

$$m_{q_i}(\phi) = m_{q_i,0}(1 + (\kappa\phi)^n d_{m_{q_i}}^{(n)})$$

$$\frac{\Delta m_j}{m_j} = (\kappa\phi)^n d_{m_j}^{(n)}$$

The inverse of H and m are the characteristical timescales of expansion and field evolution!

Dark matter

EOM for scalar field in flat FLRW spacetime

Oscillation frequency: $f \sim m_{\phi}$

Ultra light dark matter

- Ultra light dark matter (ULDM)
 → CDM on large scales while overcoming the smallscale problems (Cusp-core, missing satellites)
- ULDM forms Bose-Einstein condensate / Superfluid
- Condensation within galaxies

 → coherent oscillations
 Why coherent?

E. Ferreira, Astron A. Rev. 29/1, 2021

BEC: Field theoretic description

- Condensation: Spontaneous symmetry breaking of global U(1) symmetry by the ground state
- All particles in ground state have the same phase → Coherence
- Superfluid \rightarrow Phonons
 - E. Ferreira, Astron A. Rev. 29/1, 2021

$$= (\partial_{\mu}\Psi)^*(\partial_{\mu}\Psi) - m^2\Psi^*\Psi - \frac{g}{2}(\Psi^*\Psi)^2$$

$$\Psi \to \Psi e^{i\alpha}\,, \ \Psi^* \to \Psi e^{-i\alpha}$$

ſ.

• Variation of fine-structure constant:

$$\frac{\Delta \alpha_j}{\alpha_j} = (\kappa \phi)^n d_{\gamma/g}^{(n)} \qquad \longrightarrow \qquad \frac{d\alpha}{\alpha} = d_\gamma \ \kappa \ \phi_0 \ \cos(m_\phi c^2/\hbar \ t)$$

Comparing two clocks \rightarrow Frequency ratio $R = v_1/v_2$

$$\frac{dR}{R} = \Delta K \frac{d\alpha}{\alpha} \qquad \longrightarrow \qquad \frac{dR}{R} = \Delta K \frac{d\alpha}{\alpha} = \Delta K \ d_{\gamma} \ \kappa \ \phi_0 \ \cos(m_{\phi} c^2 / \hbar t)$$

Comparing estimated performance to measurement of NPL

$$\frac{dR}{R} = \Delta K \frac{d\alpha}{\alpha} = \Delta K \ d_{\gamma} \ \kappa \ \phi_0 \ \cos(m_{\phi} c^2 / \hbar t)$$

Atom / Ion	$\lambda_{transition}$	σ_{sys}	N_{Atoms}	T_p	au	K _α
Sr	698 nm	2×10^{-18}	10^{4}	$0.5 \ s$	$1 \mathrm{s}$	0.06
Yb ⁺	467 nm	2.7×10^{-18}	1	$0.5 \ s$	$1 \mathrm{s}$	-5.95
Cf^{15+}	618 nm	5.2×10^{-19}	1	$0.5 \ s$	$1 \mathrm{s}$	47
Cf ¹⁷⁺	485 nm	1.01×10^{-18}	1	$0.5 \ s$	$1 \mathrm{s}$	-43.05

Yb⁺/Sr : Nathaniel Sherrill et al., New J. Phys. 25 093012 (2023)

Estimated performance

Testing ULDM with clocks

Yb⁺/Sr : Nathaniel Sherrill et al., New J. Phys. 25 093012 (2023)

- DESY. *DESY. DESY. DEST. DEST*
- Perform Monte Carlo simulations to estimate minimal signal Amplitude A_{5σ}
- Analysis with Lomb-Scargle Periodogram

$$d_{\gamma} = \frac{A}{\Delta K \ \kappa \ \phi_0}$$

- Assumptions:
 - Simul. Measurement time: 1 yr Sampling time: 1 s
 - All DM in form of ULDM

$$\kappa = \sqrt{4\pi G} \qquad \phi_0 = \frac{\hbar}{mc} \sqrt{2\rho_{DM}}$$
$$\rho_{DM} = 0.4 \ GeV/cm^3$$

Comparing to existing constraints

30

Summary

- We are in the first steps of building up a highly charged ion clock at HU Berlin/DESY Zeuthen
- A highly charged ion clock promises an excellent accuracy + high sensitivity to variations of the fine-structure constant α
- Experiment offers the possibility to test many different fundamental physics models

Thank you!

EBIT: HCI production

Backup

Laser cooling

Sympathetic cooling

- Problem: HCI may not have a transition suitable for laser-cooling
- Cooling of HCI via Coulomb interaction with ion crystal Ions that can be directly laser-cooled are used to cool other ions
- Sympathetic cooling is said to be most efficient when charge/mass ratio of the cooling ion and the target ion are similar

P. Schmidt, Frequency Standards and Precision Measurements Summer School, 2023

P. Micke et al., Nature Vol. 578, 2020

Quantum logic spectroscopy

- How do we find out if the clock frequency is right with only a single ion?
- Two-ion crystal shares common motional modes
- Application of red sideband pulses

 → transfer excitation from spectroscopy ion to logic ion
- Readout of logic ion via electron shelving

Phase noise cancellation

- Fiber based Michelson interferometer
- Phase locked loop
 → AOM (acousto-optical modulator)
 used to compensate for phase noise
 of transfer fiber

 \rightarrow Constant phase relation between initial laser light and light after passing through fiber

Ultra light dark matter

Some tension between Standard ACDM-cosmology and observations

- Cusp-core problem
- Missing satellites

Fuzzy DM

- No Interaction → No superfluid, just BEC
- Now: P_{QP} counteracts gravity
- Small pertubations of BEC
 - \rightarrow Dispersion relation
 - \rightarrow Boundary scale for which stable condensation sets in:

 $\lambda_{\rm J} \sim m^{-1/2} \cdot \rho^{-1/4}$ (Jeans scale)

```
For m \sim 10^{-22} \text{ eV} \rightarrow \underline{\lambda_J} \sim 3 \text{ kpc}
```


Fuzzy DM

Adress small scale problems:

- Cusp-core problem
 - de Broglie wavelength of FDM must be smaller than radius of galaxies

$$R \gtrsim rac{1}{GMm^2}$$

- Missing satellites problem
 - Smallest halos given by Jeans scale $\lambda_J \rightarrow$ Minimum allowed mass for

subhalos

$$M_{\rm J} = \frac{4\pi}{3} \rho \left(\frac{1}{2} \lambda_{\rm J}\right)^3$$

Both problems can be solved for $\mathbf{m}_{\text{Aminar, Luis Hellmich}}^{22} \text{ eV}!$

18.07.24

Standard Cosmology - ACDM

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2},$$
$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3P)$$

Equation of state for Dark Energy, i.e. accelerated expansion:

$$\frac{P}{\rho} = \omega < -\frac{1}{3} \longrightarrow -1$$

Energy and momentum conservation

$$7_{\mu}T^{\mu}_{\nu} = 0 \longrightarrow \dot{\rho} + 3\frac{\dot{a}}{a}(\rho + P) = 0$$
$$\longrightarrow \rho \propto a^{-3(1+w)}$$

- Negative pressure is necessary for accelerated expansion!
- If CC dominates the energy density of universe $\rightarrow T_{\mu\nu} \rightarrow 0$
 - \rightarrow "Vacuum" energy

Cosmological constant problem

- <u>Main problem</u>:
 - **GR**: Cosmological constant as vacuum energy is **absolute energy QFT**: Vacuum energy (Zero-point energy) is defined **relative**
 - Comparing the observed/predicted vacuum energies:

$$\begin{split} \rho_{\Lambda}^{0} \sim \rho_{c}^{0} &= \frac{3H_{0}^{2}}{8\pi G} = \frac{3}{8\pi} H_{0}^{2} M_{P}^{2} \sim 10^{-47} GeV^{4} \\ &|\rho_{\Lambda,th}^{EW}| \sim 10^{8} GeV^{4} \end{split}$$

• Is it even feasible to identify the two vacuum energies?

Dynamical dark energy

- Very generically: What happens when vacuum energy is dynamical?
- Energy and momentum conservation must still hold
- What conclusions can be drawn?

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G T_{\mu\nu} - \Lambda g_{\mu\nu}$$

$$T_{\mu\nu} \rightarrow \tilde{T}_{\mu\nu} \equiv T_{\mu\nu} - g_{\mu\nu} \rho_{\text{vac}}$$

$$\nabla^{\mu} \left(G \tilde{T}_{\mu\nu} \right) = \nabla^{\mu} \left[G \left(T_{\mu\nu} - g_{\mu\nu} \rho_{\text{vac}} \right) \right] = 0$$

Evolution of vacuum energy density

- Focus on Case 2 (G= const., ρ_{vac}≠const)
- Mixed conservation law, energy exchange between vacuum and matter
- A solution to this equation is given by:
- This solution can also be derived from renormalization of the zero-point energy on curved space-time

$$\nabla^{\mu} \left(G \tilde{T}_{\mu\nu} \right) = \nabla^{\mu} \left[G \left(T_{\mu\nu} - g_{\mu\nu} \rho_{\text{vac}} \right) \right] = 0$$

$$\dot{\rho}_{\text{vac}} + \dot{\rho}_m + 3 H \left(\rho_m + p_m \right) = 0$$

$$\rho_{\text{vac}} (H) = \rho_{\text{vac}}^0 + \frac{3\nu}{8\pi} m_{\text{Pl}}^2 (H^2 - H_0^2)$$

Relation to variation of the fundamental constants

- Focus on Case 2 (G= const., ρ_{vac}≠const)
- Running of vacuum energy parametrized by v

 $\rho_{\rm vac}(H) = \rho_{\rm vac}^0 + \frac{3\nu}{8\pi} m_{\rm Pl}^2 (H^2 - H_0^2)$ $\rho_m(z;\nu) = \rho_m^0 (1+z)^{3(1-\nu)}$

 Departure from usual scaling of matter is also depending on v

$$\rho_m^B = n_p \, m_p$$

$$n_p(z) = n_p^0 (1+z)^{3(1-\nu)} \quad \begin{array}{l} \text{And} \\ \text{Or} \end{array} \quad m_p(z) = m_p^0 (1+z)^{-3\nu}$$

Running of proton mass!

How does this relate to fine-structure

constant α ? \rightarrow Only in Grand unified theories, model-dependent

 Running now not only with usual renormalization scale µ_R but also with cosmic time

- Strong coupling α_s depends on Λ_{QCD}
- Variation of proton mass also induces a variation of the QCD-scale parameter Λ_{QCD} itself:

Variation of fine-structure constant α

ices $m_p \simeq c_{
m QCD} \Lambda_{
m QCD},$

$$\alpha_s(\mu_R) = \frac{4\pi}{(11 - 2n_f/3) \ln\left(\mu_R^2/\Lambda_{\rm QCD}^2\right)}$$

$$\alpha_S(\mu_R) \to \alpha_S(\mu_R, H)$$

