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Motivation
1) Some systematic uncertainties can be well estimated:

• Theory systematics 
• Two points systematics ….

• Related to stat. error of control measurements
• Related to size of MC event sample 

2) But they can also be quite uncertain:
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• Non-trivial consequences:

• Fits are pulled less by incompatible data
• Incompatible data are treated as an extra source of uncertainty resulting 

in inflated confidence intervals
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Formulation of the problem

• Suppose measurements 𝒚 have a probability density 𝑃(𝒚|𝝁, 𝜽)
• 𝝁 = Parameters of interest 
• 𝜽 = Nuisance parameters

• Auxiliary Measurements 𝒖 are used to provide info on nuisance parameters and are (often) 
assumed to be independently Gaussian distributed

• The resulting Likelihood is:

𝐿 𝝁, 𝜽 = 𝑃 𝒚, 𝒖 𝝁, 𝜽 = 𝑃 𝒚|𝝁, 𝜽 ×-
!
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Can be a real measurement 
or just our best guess based 
on theoretical reasons
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• And the log Likelihood:

log 𝐿 𝝁, 𝜽 = log	𝑃 𝒚|𝝁, 𝜽 	−8
(𝒖𝒊 − 𝜽𝒊)𝟐

𝟐𝝈𝒖𝒊
𝟐
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Can be a real measurement 
or just our best guess based 
on theoretical reasons

Let systematic errors be 
potentially uncertain!



Gamma Variance Model (GVM)

!
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• The original quadratic terms in the log likelihood replaced by logarithmic terms:
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𝛆 = error-on-error parameter

𝛆 = 0.3 means 30% 
uncertainty on 𝝈
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• The original quadratic terms in the log likelihood replaced by logarithmic terms:

• Equivalent to switch from Gaussian constraints to Student’s t constraints for systematics: 
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𝛆 = error-on-error parameter

𝛆 = 0.3 means 30% 
uncertainty on 𝝈

!
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Gamma Variance Model (GVM)



Sensitivity to outliers
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• Suppose we want to average 4 measurements all with statistical and syst errors equal to 1. 
Also assume they all have equal errors-on-errors 𝜺 (auxiliary measurements set to zero):

log 𝐿% 𝝁, 𝜽  = −
1
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Measurements 
internally compatible
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1. If data are internally compatible results are only slightly modified

2. The estimate of the mean does not change when we increase 𝜀

3. The size of the confidence interval for the mean only slightly increases, reflecting the 
extra degree of uncertainty introduced by errors-on-errors

Sensitivity to outliers



• Suppose one of the measurements is an outlier
• If data are internally incompatible important changes can be observed

13

Sensitivity to outliers
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1. With increasing 𝜀, the estimate of mean is pulled less strongly by the outlier 

2. The error bar grows more significantly: the GVM treats internal incompatibility as an 
additional source of uncertainty

3. The model is sensitive to internal compatibility of the data
16

Sensitivity to outliers



Complete model
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• Gamma Variance Model:

𝜒; =#
<

𝑦< − 𝑓<(𝒂) − ∑= Γ<=𝜃= ;

𝜎<;
+#

=

𝟏 +
𝟏
𝟐𝜺𝒊𝟐

𝐥𝐨𝐠 𝟏 + 𝟐𝜺𝒊𝟐𝜽𝒊
𝟐

• Appliable both to addictive and multiplicative systematics as only the 
systematic terms in the chi2 are being changed
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Two cross-sections example
1. Consider two measurements of the same distribution, analogous to results from two separate 

experiments.

2. Both distributions are subject to a normalization uncertainty, which is assumed to be itself 
uncertain.
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• When considering errors-on-errors, the model gives greater weight to the more internally consistent 
distribution in the fit.

• The confidence interval is inflated to reflect the uncertainty coming from the conflicting scale factors.

Errors-on-errors: 0%

Two cross-sections example
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• When considering errors-on-errors, the model gives greater weight to the more internally consistent 
distribution in the fit.

• The confidence interval is inflated to reflect the uncertainty coming from the conflicting scale factors.

Errors-on-errors: 10%

Two cross-sections example
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• When considering errors-on-errors, the model gives greater weight to the more internally consistent 
distribution in the fit.

• The confidence interval is inflated to reflect the uncertainty coming from the conflicting scale factors.

Errors-on-errors: 20%

Two cross-sections example
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• When considering errors-on-errors, the model gives greater weight to the more internally consistent 
distribution in the fit.

• The confidence interval is inflated to reflect the uncertainty coming from the conflicting scale factors.

Errors-on-errors: 30%

Two cross-sections example
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• When considering errors-on-errors, the model gives greater weight to the more internally consistent 
distribution in the fit.

• The confidence interval is inflated to reflect the uncertainty coming from the conflicting scale factors.

Errors-on-errors: 40%

Two cross-sections example
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• When considering errors-on-errors, the model gives greater weight to the more internally consistent 
distribution in the fit.

• The confidence interval is inflated to reflect the uncertainty coming from the conflicting scale factors.

Errors-on-errors: 50%

Two cross-sections example
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How to implement these changes in xFitter

• Treat uncertainties with ‘errors-on-errors’ as external parameters, since the minimization 
needs to be conducted numerically.

• Typically, only a few uncertainties will significantly impact the results if they are 
themselves uncertain, usually those with pulls greater than 1.

• Introduce an “eps parameter” input in the systematics namespace:
• If eps = 0 or is not specified, use the standard quadratic term.
• If eps > 0, treat it as an external parameter and modify the constraint in the chi2 

accordingly.



Which file to modify?
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For now I use this trivial approach (to be modified):

• Modify steering file

• Read epsilon value in read_steer.f

• Modify  GetChisquare.f 



• What else should be modified? 

• Am I forgetting some other bits of the code (ex. Routines to compute 
uncertainties, ExtraParConstr.cc, …)

• Other comments?

27



• Test the impact of “errors-on-errors” on the Hera fit using the initial 
simple implementation (for framework testing purposes).

• Enhance the implementation method.

• Improve the computation of confidence intervals, as “errors-on-
errors” needs simulations for precise confidence interval analysis.

Outlook

28



Thank you for your attention



Back-up slides 
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Gamma Distributions

𝒗~
𝜷𝜶

𝜞(𝜶)
𝒗𝜶>𝟏𝒆>𝜷𝒗

𝜶 =
𝟏
𝟒𝜺𝒊𝟐

	 𝜷 =
𝟏

𝟒𝜺𝒊𝟐𝝈𝒖𝒊
𝟐

• 𝝈𝒖𝒊 	Systematic Error

• 𝜺𝒊 =
𝟏
𝟐
	𝝈𝒗𝒊
𝝈𝒖𝒊
𝟐 ≅ 𝒗𝒊

𝝈𝒖𝒊
	 relative error on 𝝈𝒖𝒊: “Error on error”

• Treat the systematic variances 𝝈𝒖𝒊
𝟐  are adjustable parameters (nuisance 

parameter).
• Suppose their best estimates 𝒗𝒊 are gamma distributed:
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Gamma Variance Model (GVM)

• The likelihood is modified as follows: 

𝐿 𝝁, 𝜽, 𝝈𝒖𝒊
𝟐 = 𝑃 𝒚 𝝁, 𝜽 	×	G

!

1
2𝜋𝜎("

𝑒) (")*" #/&𝝈𝒖𝒊
𝟐
	×

𝜷𝒊
𝜶𝒊

𝜞(𝜶𝒊)
𝒗𝒊
𝜶𝒊)𝟏𝒆)𝜷𝒊𝒗𝒊

• One can profile over 𝝈𝒖𝒊
𝟐  in closed form:

log 𝐿% 𝝁, 𝜽  =	 log 𝑃 𝒚|𝝁, 𝜽 −
1
2!

!

𝟏 +
𝟏
𝟐𝜺𝒊𝟐

𝐥𝐨𝐠 𝟏 + 𝟐𝜺𝒊𝟐
(𝒖𝒊 − 𝜽𝒊)𝟐

𝒗𝒊

• We call this model the Gamma Variance Model (GVM)

(see: G. Cowan, Eur. Phys. J. C (2019) 79:133; arXiv:1809.05778)



• Gamma distributions allow to parametrize distributions of positive 
defined variables (like estimates of variances)

• Using Gamma distributions it is possible to profile in close form over 
𝜎<; 

Motivation for the GVM
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• Gamma distributions include the case where the variance is estimate from 
a real dataset of control measurements:

𝑣! =
1

𝑛! − 1
& 𝑢!,# − (𝑢!

$	

• 𝑛 − 1 𝑣!/𝜎%!
$  follows a 𝜒&'($  distribution and 𝑣) a Gamma distribution 

with:
 

𝛼" =
𝑛" − 1
2

𝛽" =
𝑛" − 1
2𝜎#1

$

Motivation for the GVM
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• BLUE (Best Linear Unbiased Estimators) approach to combinations:

𝜒; =#
<

𝑦< − 𝑓 𝒂 𝑉<?@A(𝑦? − 𝑓(𝒂))

𝑉<? = 𝑉<?
(=BCB) + 𝑉<?

(=D=B)

• 𝑉<?
(=BCB): Statistical covariance matrix.

• 𝑉<?
(=D=B): Covariance matrix induced by systematic source.

• 𝑉<?
(=D=B) = ∑= 𝑉<?

(=)

From BLUE to the Gamma Variance Model
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• Nuisance parameters approach:

𝜒; =#
<

𝑦< − 𝑓(𝒂) − ∑= Γ<=𝜃= ;

𝜎<;
+#

=

𝜃E;

From BLUE to the Gamma Variance Model

Magnitude of the bias induced by 
the systematic source s
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• Nuisance parameters approach:

𝜒; =#
<

𝑦< − 𝑓(𝒂) − ∑= Γ<=𝜃= ;

𝜎<;
+#

=

𝜃E;

• Connection:

𝑉<?
(=D=B) =#

=

𝑉<?
(=)

𝑉<?
(=) =	Γ<=Γ?=

From BLUE to the Gamma Variance Model

Magnitude of the bias induced by 
the systematic source s
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• Gamma Variance Model:

𝜒; =#
<

𝑦< − 𝑓(𝒂) − ∑= Γ<=𝜃= ;

𝜎<;
+#

=

𝟏 +
𝟏
𝟐𝜺𝒊𝟐

𝐥𝐨𝐠 𝟏 + 𝟐𝜺𝒊𝟐𝜽𝒊
𝟐

• What to do if we do not have access to the factors ΓMN (we only know 
𝑉MO
(NPNQ))?

𝑉MO
(NPNQ) =1

N

𝑉MO
(N)
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• Switch to a nuisance parameters approach:

𝜒; =#
<

𝑦< − 𝜇 − 𝜃< ;

𝜎<;
+#

<?

𝜃<𝐶<?@A𝜃?

𝐶<? = 𝑉<?
(=)

• Substitute quadratic term with log-constraint:

From BLUE to the Gamma Variance Model

#
<?

𝜽𝒊𝑪𝒊𝒋@𝟏𝜽𝒋 #
<

𝑵+
𝟏
𝟐𝜺𝒊𝟐

𝐥𝐨𝐠 𝟏 + 𝟐𝜺𝒊𝟐𝜽𝒊𝑪𝒊𝒋@𝟏𝜽𝒋

Proof is non-trivial!



• The Hessian method is based on the assumption that the 𝜒R follows a 𝜒R 
distribution.

• Our “goodness-of-fit” statistics q is is not a 𝜒R so will will not follow exactly a 𝜒R 
for large values of 𝜖R

Large literature on the topic:
• Bartlett, M. S. (1937) Proceedings of the Royal Society A, 160, 268–282)
• Applied Asymptotics Case Studies in Small-Sample Statistics by A. R. Brazzale, A. C. Davison and N. 

Reid)
• Canonero, E., Brazzale, A.R. & Cowan, Eur. Phys. J. C 83, 1100 (2023). 

Bartlett Correction



𝑞 𝑞∗ = 𝑞
𝑁./0
𝐸[𝑞]

Bartlett Correction

• Modify the test statistic 𝑞 so that its distribution is closer to a 𝜒R	:
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𝑁./0
𝐸[𝑞]
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expectation 
value

Expectation value in 
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(degrees of freedom 
of 𝜒&)
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• Modify the test statistic 𝑞 so that its distribution is closer to a 𝜒R	:



𝑞 𝑞∗ = 𝑞
𝑁./0
𝐸[𝑞]

Exact 
expectation 
value

𝑞~𝜒; + 𝒪 𝜖;	

𝑞∗~𝜒; + 𝒪 𝜖I

Expectation value in 
the asymptotic limit 
(degrees of freedom 
of 𝜒&)

Bartlett Correction

• Modify the test statistic 𝑞 so that its distribution is closer to a 𝜒R	:
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GOAL: 
• Construct a simplified toy model to test the implementations of errors-on-errors in a real PDF fit 
• Choose a simple process that allows an easy and fast implementation.

Simplified Model (no real data)

𝒈𝒈 → 𝒕�̅�	 LO cross section:
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= g x3 g(x&)
𝑑 Y𝜎
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GOAL: 
• Construct a simplified toy model to test the implementations of errors-on-errors in a real PDF fit 
• Choose a simple process that allows an easy and fast implementation.

𝑑 Y𝜎
𝑑𝑐𝑜𝑠𝜃

𝑑𝜎22
𝑑𝑥3𝑑𝑥&𝑑𝑐𝑜𝑠𝜃

= g x3 g(x&)
𝑑 Y𝜎

𝑑𝑐𝑜𝑠𝜃

Use this to compute differential 
observables of the 𝑡 ̅𝑡 system.

Simplified Model (no real data)

𝒈𝒈 → 𝒕�̅�	 LO cross section:
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• The gluon PDF is parametrized as follow

•  𝑔 𝑥 = 𝐶𝑥% 1 − 𝑥 &

• ,𝐴 = −0.85
𝐵 = 6

• 𝐶 ∶ ∫'
(𝑔 𝑥 𝑑𝑥 = 1/2

• We are assuming that this is the gluon PDF shape at 𝑄& close to 𝑡 ̅𝑡 production scale.

Simplified Model

• The aim of the exercise is to fit the gluon PDF, using fictious data points. 


