Initial studies of N3LO fits

Student of HEP group Stakhova Anastasiia

INTRODUCTION:

- 1. Installed xFitter master N3LO branch
- 2. Added Apfelxx v4.8.0 and Apfel v3.0.6
- Using Apfelxx for N3LO and N2LO parametrization
- 3. Added Hoppet v1.3.0
- Comparison of Hoppet's performance with Apfel

- Change parameterization in N2LO and N3LO (add and delete some parameters) for optimisation
- Use only D (Duv, Ddv, Dubar, Ddbar, Dg)

 χ^2 NNLO = 1452.82 χ^2 NNNLO = 1493.63

- Use D and E (Duv, Ddv, Dubar, Ddbar, Dg, Euv, Edv, Eubar, Edbar, Eg)

 χ^2 NNLO = 1440.18 χ^2 NNNLO = 1450.27

Functional Forms for PDF Parametrisation $xfi(x) = (Ai^{*}(x^Bi)^{*}(1-x)^Ci)^{*}(1+Di^{*}x+Ei^{*}x^2+Fi^{*}ln(x)+Gi^{*}ln(x)^2)$

Selected distributions which have largest differences

N3LO

(₂0'х)0.25 $Q^2 = 1.9 \text{ GeV}^2$ xFitter temp/N3LO_D+E/output/ temp/N3LOjustD/output/ 0.2 0.15 0. 0.05 -0.05 10-3 10-4 10-2 10-1 1 x xg(x,Q²) $Q^2 = 1.9 \text{ GeV}^2$ xFitter 25 - temp/N3LO_D+E/output/ - temp/N3LOjustD/output/ "justD" vs "D+E" 0.5 10⁻³ 10⁻² 10-4 10⁻¹ x 1

Try to use the Hoppet evolution. Branch "hoppet". Comparison Hoppet with Apfel

Based on "examples/ploughshare",

ATLAS 7 TeV W+ production data

 χ^2 Hoppet = 88

 χ^2 Apfel = 116

xg(x,Q²)

3⊢

2.5

2

1.5

0.5

 \rightarrow some differences for the gluon WIP

V

Thank you for you attention

1) Use the same parameters for N2LO parametrization with APFEL and APFEL++

N2LO $\chi^2 = 1317.42$ APFEL++

N2LO $\chi^2 = 1283.49$ APFEL

