# EFT reaction: SMEFT+PDF extraction in the xFitter framework

xFitter meeting 10 September 18, 2024

**Xiaomin Shen** 

[arXiv: 2407.16061], in collaboration with Simone Amoroso, Jun Gao, Katerina Lipka, Oleksandr Zenaiev

#### Indirect BSM search in framework of SMEFT

- The SM Effective Field Theory (SMEFT)
  - symmetries:  $SU(3)_C \times SU(2)_L \times U(1)_Y$  (+ L conservation + ...)
  - + expanded in  $\Lambda_{\mathrm{NP}}~(\gg \Lambda_{\mathrm{EW}})$

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \frac{c_i^{(8)}}{\Lambda^4} \mathcal{O}_i^{(8)} + \cdots$$



Wilson coefficients determined by minimizing

$$\chi^{2}(\text{PDF}, \text{SMEFT}) = \sum_{i,j=1}^{N_{\text{pt}}} (T_{i} - D_{i})(\text{cov}^{-1})_{ij} (T_{j} - D_{j})$$

$$T(c_{\text{EFT}}) = \text{PDF} \otimes \hat{\sigma}(c_{\text{EFT}})$$

## Motivation for joint SMEFT-PDF fits

$$T(c_{\text{EFT}}) \sim \text{PDF}(c_{\text{EFT}} = 0) \otimes \hat{\sigma}(c_{\text{EFT}})$$

- SMEFT analyses may be biased using SM PDFs
  - NP may be absorbed by PDFs, and escape subsequent NP hunting.
  - a more and more relevant question as our measurements improve in accuracy
- Simultaneous determination of PDFs and SMEFT

$$T(\theta_{\text{PDF}}, c_{\text{EFT}}) = \text{PDF}(\theta) \otimes \hat{\sigma}(c_{\text{EFT}})$$

few studies by the PDF fitting groups: SIMUnet (NNPDF4.0), CT18

this work —> develop a new xFitter reaction for SMEFT-PDF fit

#### Fit in the xFitter framework

- xFitter is a powerful tool for
  - extracting PDFs
  - evaluating consistency between data and theory
  - performing inference on theoretical model parameters ( $m_t, \alpha_s, \theta_{\mathrm{EW}}$  etc.)
- EFT fits in the xFitter framework





## Ingredients for PDF+SMEFT fit

- Global anaysis: various parameters and processes
  - flexible interface allowing us to parametrize the theory dependence on various operators for a wide variety of processes

- incorpolate EFT contribution by fast grids (APPLgrid, PineAPPL)
  - ensure both the precision and the speed
  - incorporate full dependence of EFT corrections on PDFs

$$\sigma (c_{tG} = 0) \equiv \sigma_{SM}$$

$$\sigma (c_{tG} = -30/\text{TeV}^2) = \sigma_{SM} - 30 \cdot l_{c_{tG}} + 30^2 \cdot q_{c_{tG}}$$

$$\sigma (c_{tG} = 40/\text{TeV}^2) = \sigma_{SM} + 40 \cdot l_{c_{tG}} + 40^2 \cdot q_{c_{tG}}$$

3 PineAPPL grids are generated to determine EFT corrections for the CtG parameter

## Parameterization of EFT dependence

quadratic polynomial dependence

$$\stackrel{\boldsymbol{\sigma}^{(\alpha)}(\boldsymbol{c}; \alpha_s, \text{PDF})}{=} \sigma_{\boldsymbol{c}=0}^{(\alpha)} \times \left( 1 + \sum_{i} c_i K_i^{(\alpha)} + \sum_{i \leqslant j} c_i c_j K_{ij}^{(\alpha)} \right)$$

#### **Examples of parameters** *c*:

- ◆ SMEFT Wilson coefficient: c<sub>i</sub>
- SM parameters:  $\delta m_t \equiv m_t 172.5 \text{GeV}$
- linear/quadratic BSM K factors
  - have to be firstly calculated outside xFitter EFT reaction



## **HL-LHC** projection study

- illustrate the functionality of the EFT reaction
  - \* simultaneous determination of HERAPDF +  $m_t$  + SMEFT

$$xf(x) = Ax^{B}(1-x)^{C}(1+Dx+Ex^{2})$$

- \* HL-LHC projection of  $m_{t\bar{t}}$ 
  - CMS measurement of  $m_{t\bar{t}}$  at 13 TeV with rescaled uncertainties
- HERA-II combination of DIS
  - to properly determine PDFs



## Theoretical predictions

4 representative dim-6 SMEFT operators

$$egin{aligned} O_{tu}^{1} &= \sum_{i=1}^{2} \; (ar{t} \; \gamma_{\mu} \, t_{R}) \, (ar{u}_{Ri} \, \gamma^{\mu} \, u_{i}) \ O_{td}^{1} &= \sum_{i=1}^{3} \; (ar{t} \; \gamma^{\mu} \, t) \, (ar{d}_{Ri} \, \gamma_{\mu} \, d_{i}) \ O_{tq}^{8} &= \sum_{i=1}^{2} \; (ar{q}_{i} \, \gamma^{\mu} \, T^{A} \, q_{i}) \, (ar{t} \; \gamma_{\mu} \, T^{A} \, t) \ O_{tG} &= i \, g_{s} \, (ar{Q} \, au^{\mu \nu} \, T_{A} \, t) \, \tilde{\varphi} \, G_{\mu \nu}^{A} + \mathrm{h.c.} \end{aligned}$$

- \* EFT contributions to  $m_{tt}$  calculated at NLO QCD
  - MG5\_aMC@NLO + SMEFT@NLO + PineAPPL
  - quadratic dependence and BSM K factors



$$\sigma = \sigma_{\text{SM}} \times (1 + K_{\text{tq8}}^{(1)} c_{\text{tq8}} + K_{\text{tq8}}^{(2)} c_{\text{tq8}}^2 + K_{\text{tG}}^{(1)} c_{\text{tG}} + \cdots)$$

## PDF dependence of EFT contributions

$$\sigma(c_{\rm tq8}, c_{\rm tG}) = \sigma_{\rm SM} \times (1 + K_{\rm tq8}^{(1)} c_{\rm tq8} + K_{\rm tq8}^{(2)} c_{\rm tq8}^2 + K_{\rm tG}^{(1)} c_{\rm tG} + \cdots)$$



 BSM K factors for linear/quadratic dependence on EFT operators are often assumed to independent of PDFs

- PDF dependence of EFT contribution is typically small
- can be as large as 10% for ABMP and HERAPDF
- motivates the use of grids instead of tabulated BSM K factors

#### Results

- pseudo data generated with non-zero SMEFT parameters
  - The fit can retrieve injected values within quoted fit uncertainties

|                      | $m_t \ [{ m GeV}]$  | $\begin{vmatrix} c_{tG} \\ [\text{TeV}^{-2}] \end{vmatrix}$ | $\begin{vmatrix} c_{tq}^{(8)} \\ [\text{TeV}^{-2}] \end{vmatrix}$ | $\begin{vmatrix} c_{tu}^{(1)} \\ [\text{TeV}^{-2}] \end{vmatrix}$ | $\begin{bmatrix} c_{td}^{(1)} \\ [\text{TeV}^{-2}] \end{bmatrix}$ |
|----------------------|---------------------|-------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|
| generated            | 172.5               | -0.1                                                        | 1.0                                                               | 0                                                                 | 0                                                                 |
| SMEFT-SMEFT (full)   | $ 172.50\pm0.37$    | $ -0.11 \pm 0.08 $                                          | $\mid 1.00 \pm 0.25$                                              | $\left -0.01\pm0.37\right $                                       | $\mid 0.01 \pm 1.14$                                              |
| SMEFT-SMEFT (linear) | $172.47 \pm 0.36$   | $ -0.07 \pm 0.39 $                                          | $ 0.35\pm12.22$                                                   | $ig -0.35\pm3.46$                                                 | $\mid 8.36 \pm 53.34 \mid$                                        |
| SMEFT-SM             | $172.83 \pm 0.23$   | _                                                           | _                                                                 | _                                                                 | _                                                                 |
| fixed-PDF SMEFT      | $ 172.41 \pm 0.35 $ | $ -0.14 \pm 0.08 $                                          | $0.93 \pm 0.50$                                                   | $ -0.01 \pm 1.05 $                                                | $ -0.09 \pm 1.69 $                                                |

 The Wilson coefficients are not well constrained if only linear EFT corrections are included in the fit.

$$egin{aligned} O_{tu}^{1} &= \sum_{i=1}^{2} \; (ar{t} \; \gamma_{\mu} \, t_{R}) \, (ar{u}_{Ri} \, \gamma^{\mu} \, u_{i}) \ O_{td}^{1} &= \sum_{i=1}^{3} \; (ar{t} \; \gamma^{\mu} \, t) \, (ar{d}_{Ri} \, \gamma_{\mu} \, d_{i}) \ O_{tq}^{8} &= \sum_{i=1}^{2} \; (ar{q}_{i} \, \gamma^{\mu} \, T^{A} \, q_{i}) \, (ar{t} \; \gamma_{\mu} \, T^{A} \, t) \ O_{tG} &= i \, g_{s} \, (ar{Q} \, au^{\mu 
u} \, T_{A} \, t) \, ilde{arphi} \, G_{\mu 
u}^{A} + \mathrm{h.c.} \end{aligned}$$

#### PDF uncertainties and biases

compare resulting PDFs when we fit pseudodata with non-zero Wilson coefficients with (SMEFT-SMEFT) or without (SMEFT-SM) fitting the EFT simultanesouly





## Summary

- joint SMEFT+PDF fits are more self-consistent
  - simultaneous determination of PDFs and SMEFT may become more relevant as our measurements improve in accuracy
  - SMEFT analyses may be biased if SM PDFs are used
- a new xFitter EFT reaction is developed
  - designed for SMEFT+PDF fit
  - also suitable for fitting SM/SMEFT parameters with fixed PDFs
  - quadratic polynomial (+ limited support for higher power corrections)
  - include BSM K factors via fast grids or tabulated cross-sections

## backup

#### Install the EFT reaction

- Download the source
  - https://gitlab.cern.ch/fitters/xfitter/-/tree/reaction-smeft/reactions/EFT

and then recompile xFitter

```
appending a new line add_subdirectory(reactions/EFT) to /path_to_xfitter/xfitter_master/CMakeLists.txt; recompiling xFITTER by executing cd /path_to_xfitter source setup.sh cd xfitter_master ./make.sh install .
```

## Main arguments of the EFT reaction

```
TermName = 'SMNNLO', 'KEFT'
TermSource = 'PineAPPL', 'EFT'
TermInfo =
    'GridName=/path/to/PineAPPL_grid.pineappl',
    'ListEFTParam=deltamt,ctg,ctq8:FileName=/path/to/EFT_file.yaml
:xiF=1.0:xiR=1.0'
TheorExpr = 'SMNNLO*KEFT'
```

- mandatory arguments
  - FileName: 10 linear + 10 quadratic + 45 mixed terms for 10 parameters
  - ListEFTParam
- controlling the reaction output

| AbsOutput | NoCentral | reaction output                               |
|-----------|-----------|-----------------------------------------------|
| False     | False     | $\sigma(\mathbf{c})/\sigma(\mathbf{c}=0)$     |
| False     | True      | $\sigma(\mathbf{c})/\sigma(\mathbf{c}=0)-1$   |
| True      | False     | $\mid \sigma(\mathbf{c})$                     |
| True      | True      | $\sigma(\mathbf{c}) - \sigma(\mathbf{c} = 0)$ |

## EFT YAML file for fitting one EFT parameter

```
# The EFT YAML file for fitting ctg
SM_NLO: # name of the entry is almost arbitrary
  type: C # Central predictions (sigma_0 in Eq.(A1))
  format: PineAPPL # xsec are PineAPPL tables
  xsec: [ /path/to/SM_NLO.pineappl ]
Linear_ctg: # This starts a new entry
  type: L # predictions up to Linear corrections
 param: ctg # name of the parameter (in ListEFTParam)
  param_value: 20.0 # value of ctg used to generate the grid
  format: PineAPPL
  xsec: [ /path/to/ctg1.pineappl ] # SM_NLO + 20.0*l_ctg
Quadratic_ctg: \# SM_NLO + 40.0*1_ctg + 40.0^2*q_ctg
  type: Q # predictions up to Quadratic corrections
 param: ctg
 param_value: 40.0
  format: PineAPPL
  xsec: [ /path/to/ctg2.pineappl ]
```

$$\sigma(c_{tG} = 0) \equiv \sigma_0$$

$$\sigma_{\text{lin.}}(c_{tG} = 20) = \sigma_0 + 20 \cdot l_{c_{tG}}$$

$$\sigma(c_{tG} = 40) = \sigma_0 + 40 \cdot l_{c_{tG}} + 40^2 \cdot q_{c_{tG}}$$

## Types of the entries

$$\sigma^{(\alpha)}(\boldsymbol{c}; \alpha_s, \text{PDF}) = \sigma_0^{(\alpha)} + \sum_i c_i \sigma_i^{(\alpha)} + \sum_{i \leqslant j} c_i c_j \sigma_{ij}^{(\alpha)}$$
$$= \sigma_0^{(\alpha)} \left( 1 + \sum_i c_i K_i^{(\alpha)} + \sum_{i \leqslant j} c_i c_j K_{ij}^{(\alpha)} \right)$$

| type | param         | $\mid$ param_value $\mid$ | xsec                                                                    |
|------|---------------|---------------------------|-------------------------------------------------------------------------|
| C    | _             | _                         | $\sigma_0$                                                              |
| 1    | $\mid i \mid$ | _                         | $l_i \equiv \sigma_i$                                                   |
| q    | $\mid  i$     | _                         | $q_i \equiv \sigma_{ii}$                                                |
| m    | ig  [i,j]     | _                         | $m_{ij} \equiv \sigma_{ij}$                                             |
| L    | $\mid  i$     | $\mid c_i \mid$           | $\sigma_0 + c_i \sigma_i$                                               |
| Q    | $\mid  i$     | $ c_i $                   | $\sigma_0 + c_i l_i + c_i^2 q_i$                                        |
| M    | ig  [i,j]     | $ig  [c_i, c_j]$          | $\sigma_0 + c_i l_i + c_j l_j + c_i^2 q_i + c_j^2 q_j + c_i c_j m_{ij}$ |

#### Format of entires

- format=
  - PineAPPL, APPLgrid
  - xsection (xsec for each bin)
  - ratio (K factors for each bin)

```
ctg_ctq8: # theoretical predictions for ctg=20, ctq8=40
  type: M # include the Mixing between ctg and ctq8
  param: [ctg, ctq8] # both ctg and ctq8 are non-zero
  param_value: [20.0, 40.0] # ctg=20, ctq8=40
  format: PineAPPL
  xsec: [ /path/to/ctg_ctq8.pineappl ]

Kfactor_mt_linear: # l_deltamt / Central
  type: l
  param: deltamt
  format: ratio # xsec is an array of ratios
  xsec: [-0.10349132, -0.02400355, -0.01317847, ...]
```

- using other xFitter reactions instead?
  - PineAPPL, APPLgrid
  - KFactor

### Including higher power corrections via monomials

```
\sigma^{(\alpha)}(\boldsymbol{c}; \alpha_s, \text{PDF}) = \sigma_0^{(\alpha)} + \sum_i c_i \sigma_i^{(\alpha)} + \sum_{i \leqslant j} c_i c_j \sigma_{ij}^{(\alpha)}= \sigma_0^{(\alpha)} \left( 1 + \sum_i c_i K_i^{(\alpha)} + \sum_{i \leqslant j} c_i c_j K_{ij}^{(\alpha)} \right)
```

```
mt_cubic: # contribution proportional to deltamt^3
 type: monomial
 format: ratio
 param: [deltamt]
 power: [3]
 xsec: [0.0001, ...]
mt3_ctg: # contribution proportional to deltamt^3 * ctg
 type: monomial
 format: ratio
 param: [deltamt, ctg]
 power: [3, 1]
 xsec: [0.0002, ...]
```