Measuring Proton Structure Functions with xFitter

Philip Antonopoulos

DESY Summer Student

Supervisors
Sasha Glazov & Sasha Zenaiev

Review

Review

Goal of the project:

Use HERA & Fixed Target at N3LO with

xFitter to produce PDF plots and compare

with MSHT and NNPDF

Review

Goal of the project: Use HERA & Fixed Target at N3LO with xFitter to produce PDF plots and compare with MSHT and NNPDF

Previous work:

- Included HERA and Fixed Target in steering.txt
- Produced PDFs for HERA data to use as a baseline
- Attempted fit with HERA + Fixed Target data with a 3.5 GeV^2 Q^2 cut: non-ideal effects present
- Attempted fix with $x \& Q^2$ cut: non-ideal effects remained
- Introduced W2 to the datasets and used to cut at 12.5 GeV^2 along with the Q^2 cut: non-ideal effects further controlled through deviation from MSHT and NNPDF for u and d valence PDFs hints at tension between the data

```
Minimizer: MINUIT
MINUIT:
  Commands: |
    set str 2
    MIGRAD 20000
    HESSE
    call fcn 3
  doErrors: Pumplin
  threads: 20
Parameters:
  Adbar : [ 0.21729894, 0.00596153 ]
  Adv : [ 1.00000000, 0.000000000 ]
  Aq : [ 1.00000000, 0.000000000 ]
  Agp : [ 0.06116521, 0.04085875 ]
  Auv : [ 1.00000000, 0.000000000 ]
  Bdbar : [ -0.07669832, 0.00379618 ]
  Bdv : [ 1.18174075, 0.06832448 ]
  Bg : [ -0.14441817, 0.04632487 ]
  Bgp : [ -0.48321435, 0.04931820 ]
  Buv : [ 0.82332140, 0.01248925 ]
  Cdbar: [ 14.65042635, 2.17686357 ]
  Cdv: [ 5.52795978, 0.32504327 ]
  Cg : [ 3.23168719, 0.25974569 ]
  Cgp : [ 25.00000000, 0.000000000 ]
  Cubar: [ 13.35201436, 1.65139685 ]
  Cuv : [ 2.61122356, 0.08321544 ]
  DATANORM_NMC120 : [ 1.00000000, 0.1000000 ]
  DATANORM_NMC200 : [ 1.00000000, 0.1000000 ]
  DATANORM_NMC280 : [ 1.00000000, 0.1000000 ]
  DATANORM_NMC90 : [ 1.00000000, 0.00000000 ]
  DATANORM SLAC49a : [ 1.00000000, 0.000000000 ]
  DATANORM_SLAC49b : [ 1.00000000, 0.10000000 ]
  DATANORM_SLAC87 : [ 1.00000000, 0.10000000 ]
  DATANORM_SLAC89b : [ 1.00000000, 0.10000000 ]
  Dubar : [ 3.70239580, 2.47561356 ]
  Duv : [ 0.00000000, 0.000000000 ]
  Euv : [ -1.00048890, 0.06650143 ]
  ZERO : [ 0.00000000, 0.000000000 ]
  fs : [ 0.40000000, 0.000000000 ]
```

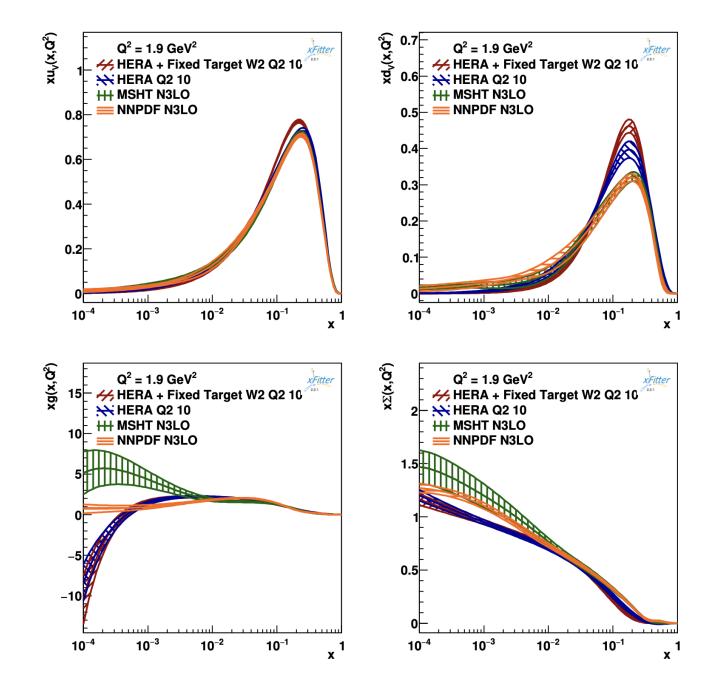
```
&Cuts
                        NC ep
  ! Rule #1: Q2 cuts
                     = 'NC e+-p'
   ProcessName(1)
   Variable(1)
                     = 'Q2'
   CutValueMin(1)
                     = 10.0
   CutValueMax(1)
                     = 1000000.0
              ---- СС ер
                     = 'CC e+-p'
   ProcessName(2)
   Variable(2)
                     = 'Q2'
   CutValueMin(2)
                     = 10.0
   CutValueMax(2)
                     = 1000000.0
   ----- Charm
   ProcessName(3)
                     = 'NC e+-p charm'
   Variable(3)
                     = 'Q2'
   CutValueMin(3)
                     = 10.0
                     = 1000000.0
   CutValueMax(3)
               ---- Beauty
   ProcessName(4)
                     = 'NC e+-p beauty'
   Variable(4)
                     = 'Q2'
   CutValueMin(4)
                     = 10.0
   CutValueMax(4)
                     = 1000000.0
   ProcessName(5)
                     = 'muon p'
   Variable(5)
                     = 'Q2'
                     = 10.0
   CutValueMin(5)
   CutValueMax(5)
                     = 1000000.0
   ProcessName(6)
                     = 'muon p'
                     = 'W2'
   Variable(6)
                     = 12.5
   CutValueMin(6)
   CutValueMax(6)
                     = 100000
   ProcessName(7)
                     = 'NC e+-p slac'
                     = 'W2'
   Variable(7)
   CutValueMin(7)
                     = 12.5
   CutValueMax(7)
                     = 100000
   ProcessName(8)
                     = 'NC e+-p slac'
   Variable(8)
                     = 'Q2'
   CutValueMin(8)
                     = 10.0
   CutValueMax(8)
                     = 1000000
```

Fits conducted:

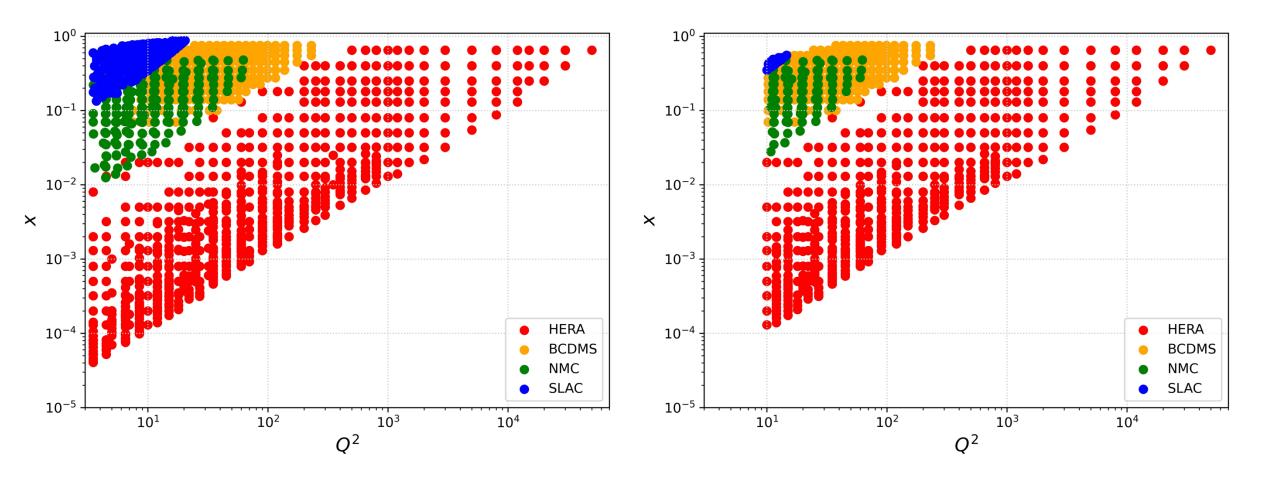
All at N3LO

- HERA with Q^2 3.5
- HERA with Q^2 10
- HERA + Fixed Target $Q^2 > 3.5$
- HERA + Fixed Target $Q^2 > 3.5 W^2 > 12.5$
- HERA + Fixed Target $Q^2 > 10$ $W^2 > 12.5$

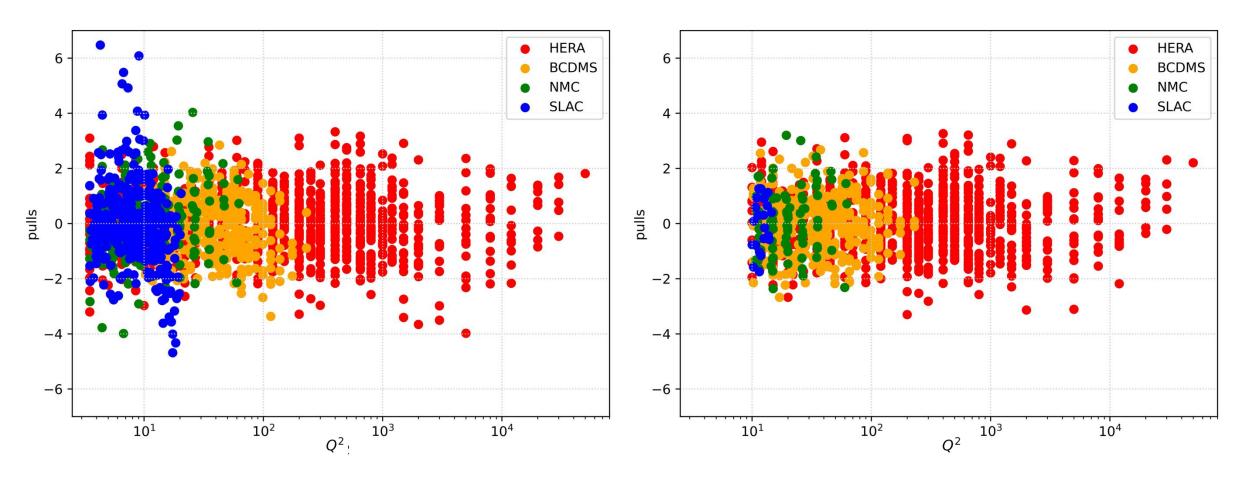
Fit	χ^2	ν	$\chi^2_{ u}$
HERA ($Q^2 > 3.5 \ GeV^2$)	1526	1204	1.27
HERA (Q^2 > 10 GeV^2)	1275	1062	1.20
HERA & Fixed Target ($Q^2 > 3.5 GeV^2$)	3264	2109	1.55
HERA & Fixed Target ($Q^2 > 3.5 \ GeV^2 \ W^2 > 12.5 \ GeV^2$)	2392	1826	1.31
HERA & Fixed Target ($Q^2 > 10 \; GeV^2 \; W^2 > 12.5 \; GeV^2$)	1815	1500	1.21

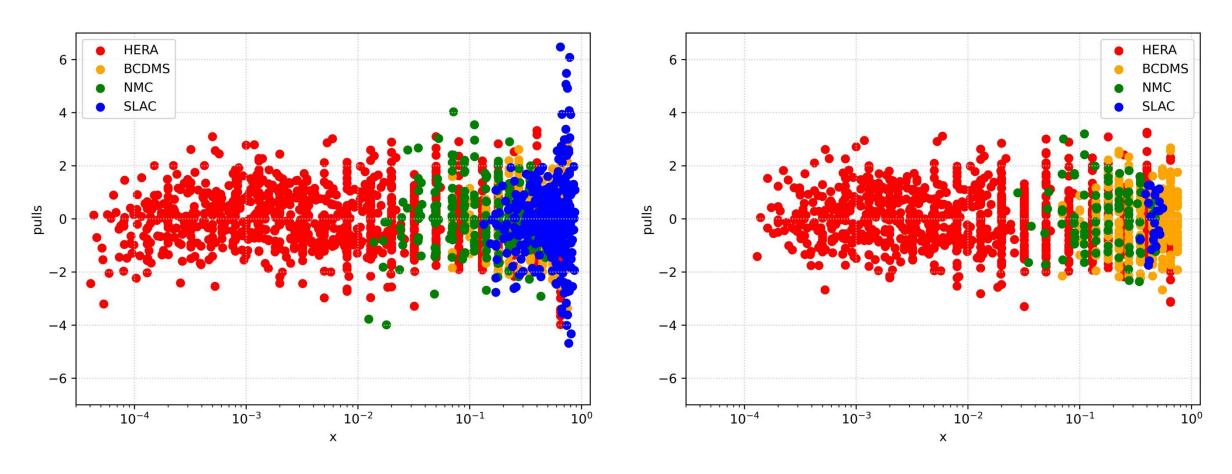

Fit	χ^2	ν	$\chi^2_{ u}$
HERA ($Q^2 > 3.5 \ GeV^2$)	1526	1204	1.27
HERA (Q^2 > 10 GeV^2)	1275	1062	1.20
HERA & Fixed Target ($Q^2 > 3.5 GeV^2$)	3264	2109	1.55
HERA & Fixed Target ($Q^2 > 3.5 \ GeV^2 \ W^2 > 12.5 \ GeV^2$)		1826	1.31
HERA & Fixed Target ($Q^2 > 10 \ GeV^2 \ W^2 > 12.5 \ GeV^2$)	1815	1500	1.21

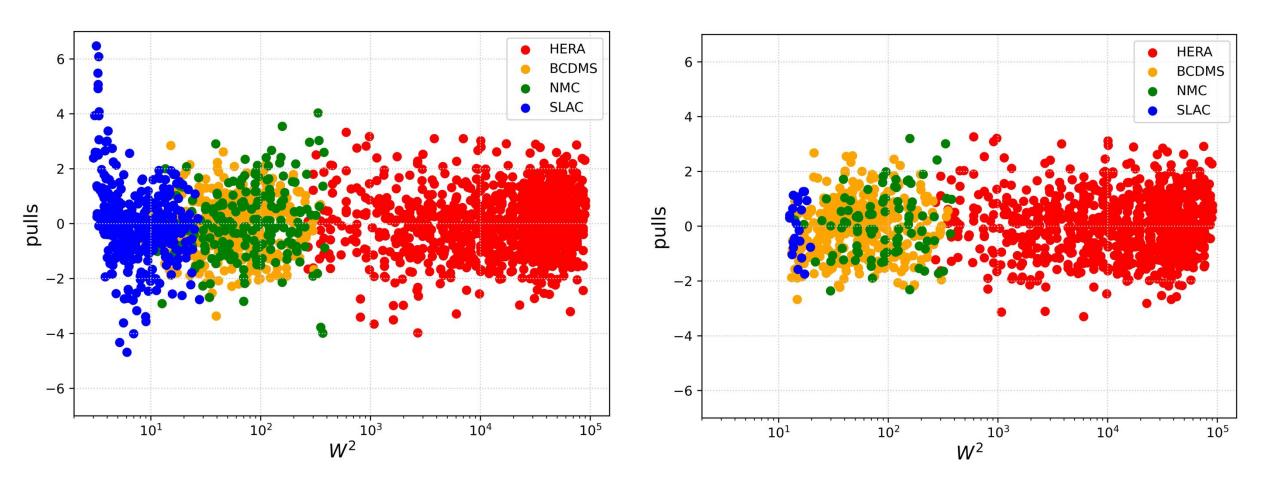
- Improvement when applying a higher Q^2 cut
- Jump when introducing new data, non-ideal region + tension between the data
- HERA + Fixed Target with both Q^2 10 and W^2 close to HERA Q^2 10 baseline


Fit	χ^2	ν	$\chi^2_{ u}$
HERA ($Q^2 > 3.5 \ GeV^2$)	1526	1204	1.27
HERA (Q^2 > 10 GeV^2)	1275	1062	1.20
HERA & Fixed Target ($Q^2 > 3.5 \ GeV^2$)	3264	2109	1.55
HERA & Fixed Target ($Q^2 > 3.5 \ GeV^2 \ W^2 > 12.5 \ GeV^2$)	2392	1826	1.31
HERA & Fixed Target ($Q^2 > 10 \ GeV^2 \ W^2 > 12.5 \ GeV^2$)	1815	1500	1.21

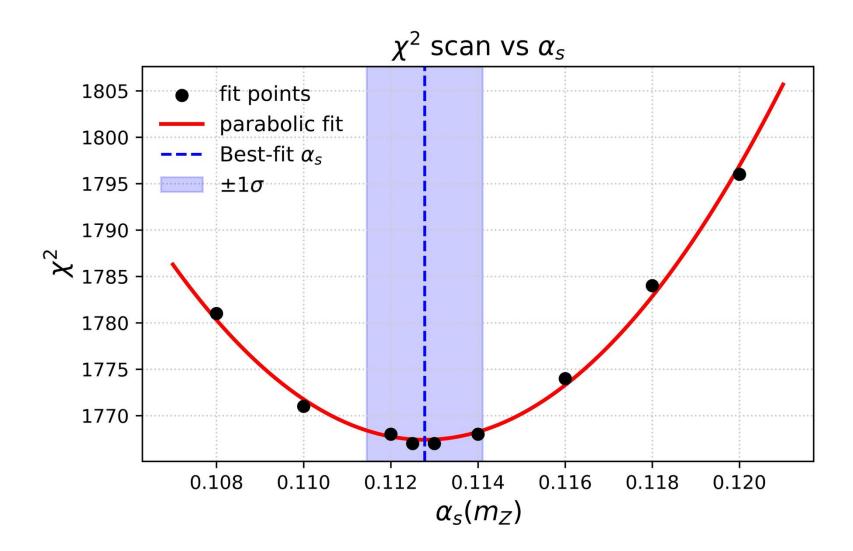
- Improvement when applying a higher Q^2 cut
- Jump when introducing new data, non-ideal region + tension between the data
- HERA + Fixed Target with both Q^2 10 and W2 close to HERA Q^2 10 baseline


- Divergence for u and d valence
- Inconclusive for gluon
 PDF


N3LO Studies: Q2 3.5 v all cuts


Kinematic coverage before and after all the cuts

Pulls before(only Q^2 3.5 cut) and after all the cuts as a function of Q^2


Pulls before(only Q^2 3.5 cut) and after all the cuts as a function of Bjorken x

Pulls before(only Q^2 3.5 cut) and after all the cuts as a function of W^2

1	'Adbar' 0.201695	0.019505	
2	'Adv' 1.000000	0.000000	
3	'Ag' 1.000000	0.000000	
4	'Agp' 0.268080	0.054220	
5	'Auv' 1.000000	0.000000	
6	'Bdbar' -0.083942	0.015456	
7	'Bdv' 1.262349	0.089677	
8	'Bg' -0.604440	0.142530	
9	'Bgp' -0.661974	0.106610	
10	'Buv' 0.848171	0.018483	
11	'Cdbar' 11.809276	2.608634	
12	'Cdv' 5.795115	0.410763	
13	'Cg' 2.106909	0.901820	
14	'Cgp' 25.000000	0.000000	
15	'Cubar' 15.854858	1.599993	
16	'Cuv' 2.625505	0.097792	
17	'DATANORM_NMC120'		
18	'DATANORM_NMC200'		
19	'DATANORM_NMC280'		
20	'DATANORM_NMC90'	1.000000	
21	'DATANORM_SLAC49a'	1.000000	
22	'DATANORM_SLAC49b'		
23	'DATANORM_SLAC87'		
24	'DATANORM_SLAC89b'	1.010350	0.019097
25	'Dubar' 10.896419		
26	'Duv' 0.000000	0.000000	
27	'Euv' -1.036714		
28	'ZERO' 0.000000		
29	'fs' 0.400000	0.000000	
output/p	parsout_1 (END)		

Parsout_1

$$\alpha_0 \qquad \sigma$$

$$\alpha_s = 0.113 \pm 0.001$$

 \sim 5 σ away from the PDG value

Fixed target datasets have pulls that decrease the strong coupling

$$\chi^2 = \frac{(\alpha_s - \alpha_0)^2}{\sigma^2} + c$$

Next Steps

- Testing new datafiles with W2 cut and pushing to the git
- Modifying the initial parametrisation to allow more flexibility in the fit
- Performing scans over more parameters to get uncertainties for the strong coupling