Optimization of top quark pair kinematic reconstruction using CMS Open Data

Spitsyn Mykyta

Taras Shevchenko National University of Kyiv

Supervisors: Oleksandr Zenaiev

Introduction

- This project is about improving experimental measurements of top quark production
- It is not directly related to xFitter, but hopefully in the future improved measurements, obtained with methods described in this project, will be used in xFitter

Tasks

- Explore $t\bar{t}$ reconstruction methods in the dileptonic decay channel using CMS Open Data
- Evaluate the efficiency, resolution, and parameter bias for each method and compare results with CMS
- Determine the differential and total $t\bar{t}$ production cross sections using each reconstruction method, compare results and assess their accuracy

Decay channels of the $t\bar{t}$ system

$t \bar t$ decays via three channels:

- Dileptonic channel (10.5%): $t\bar{t} \to W^+bW^-\bar{b} \to \ell^+\nu b\ell^-\bar{\nu}\bar{b}$
- Lepton+jet channel (43.8%): $t\bar t \to W^+bW^-\bar b \to q\bar q'b\ell^-\bar \nu \bar b$ or $\ell^+\nu bq\bar q'\bar b$
- All-jets channel (45.7%): $t\overline{t} \to W^+bW^-\overline{b} \to q\overline{q}'bq\overline{q}\overline{b}$

Data used

This study uses CMS Open Data. The datasets include both Monte Carlo generated samples and real CMS detector data.

- 1. Experimental data:
 - · Dileptonic decays
 - μ[±]μ[∓]
 - \bullet $e^{\pm}e^{\mp}$
 - $\bullet \ e^{\pm}\mu^{\mp}$
- 2. Monte Carlo data
 - Signal (MadGraph + Pythia6)
 - Background:
 - $t\bar{t}$ (decay via τ leptons) (MadGraph + Pythia6)
 - ► t (POWHEG + Pythia6)
 - ► Drell-Yan process $(Z \to \mu^+ \mu^-, Z \to e^+ e^-)$ (MadGraph + Pythia6)
 - ▶ W⁺ bosons and jets

Analytical reconstruction methods

- FKR Full Kinematic Reconstruction. Reconstructs the four-momenta of t and \bar{t} using energy–momentum conservation and known intermediate particle masses. The system of equations is solved 100 times with detector resolution smearing.
- SKR Simple Kinematic Reconstruction. A simplified variant of FKR without detector resolution smearing; the kinematic equations are solved only once.
- LKR Loose Kinematic Reconstruction. Does not reconstruct ν and $\overline{\nu}$ separately but treats them as a $\nu\overline{\nu}$ system, increasing efficiency but preventing reconstruction of t and \overline{t} separately, only the $t\overline{t}$ system.

Full kinematic reconstruction

Goal: obtain $\vec{p}_t,\,\vec{p}_{\overline{t}}$

• Measured input: 2 leptons, 2 jets, $p_{\mathrm{T}}^{\mathrm{miss}}$

• Unknowns: $\overline{p}_{\nu}, \overline{p}_{\overline{\nu}},$

· Constraints:

 $\blacktriangleright \ m_t, m_{\overline{t}}$

 $\qquad \qquad \bullet \ m_{W^+}, m_{W^-}$

 $p_{\mathrm{T}}^{\mathrm{miss}} = p_{\nu,T} + p_{\overline{\nu},T}$

- For each pair of jets equations of the form $m_t^2=E^2-p^2$ are used
- If there are several combinations, b-tagged jets and solutions with lowest $m_{t\bar t}$ are prefered and the 2nd order equations become 4th order

Loose kinematic reconstruction

The kinematic variables of the $\nu\overline{\nu}$ system are derived as follows:

- 1. The transverse momentum \vec{p}_T of the $\nu \overline{\nu}$ system is set equal to $\vec{p}_{\mathrm{T}}^{\mathrm{miss}}$
- 2. The $\nu\overline{\nu}$ longitudianl momentum $p_{z,\nu\overline{\nu}}$ is set to that of the lepton pair $p_{z,\nu\overline{\nu}}=p_{z,\ell\overline{\ell}}$
- 3. The energy $\nu\overline{\nu}$ of the $E_{\nu\overline{\nu}}$ system is defined as $E_{\nu\overline{\nu}}$ = $E_{\ell\overline{\ell}}$ for $p_{\nu\overline{\nu}}$ < $E_{\ell\overline{\ell}}$ and $E_{\nu\overline{\nu}}=p_{\ell\overline{\ell}}$ for $p_{\nu\overline{\nu}}$ > $E_{\ell\overline{\ell}}$ (to ensure that $m_{\nu\overline{\nu}}\geq 0$)
- 4. The four momentum $\ell \bar{\ell} \nu \bar{\nu}$ is calculated
- 5. For $m_{\ell \bar{\ell} \nu \bar{\nu}} < 2 m_W = 2 \times 80.4$ GeV, the mass component of the four-momentum of $\ell \bar{\ell} \nu \bar{\nu}$ is set to $2 m_W$, ensuring that $m_{W^+W^-} \geq 2 m_W$
- 6. The four momentum of the $t\bar{t}$ system is calculated by using the four momentum of the $\ell\bar{\ell}\nu\bar{\nu}+b\bar{b}$

Evaluation of reconstruction methods

One of the most important characteristics of the kinematic reconstruction is efficiency – the ratio of reconstructed to Monte Carlo generated events. Additionally, resolution and parameter bias are evaluated as functions of invariant mass, transverse momentum, rapidity, and azimuthal angle of the $t\bar{t}$ system. Average efficiencies:

Reconstruction method	Efficiency	
FKR	82%	
SKR	67%	
LKR	96%	

Efficiency, resolution, and bias

Reconstruction efficiency E and its uncertainty ΔE are defined as:

$$E = rac{N_{
m reco}}{N_{
m MCgen}}$$
 $\Delta E = \sqrt{rac{E(1-E)}{N_{
m MCgen}}}$

 $N_{
m reco}$, $N_{
m MCgen}$ – number of reconstructed and generated events

Bias and its uncertainty:

$$\overline{r} = \frac{1}{n} \sum_{i}^{n} r_{i} \qquad \qquad \Delta r = \frac{\sigma}{\sqrt{n}}$$

where σ – resolution,

$$\begin{split} r_i &= x_{\rm rec,\;i} - x_{\rm gen,\;i}, \quad \text{i--event index}, \quad \text{x--parameter value} \ (y, p_T, M, \varphi) \\ x_{\rm gen} &- \text{true} \ (\text{MC generated}) \ \text{value}, \quad x_{\rm rec} - \text{reconstructed value}, \\ \text{n--number of reconstructed events in a bin.} \end{split}$$

Reconstruction resolution:

$$\sigma = \sqrt{\frac{1}{n} \sum_{i}^{n} \left(r_{i} - \overline{r}\right)^{2}}$$

Resolution uncertainty:

$$\Delta \sigma = \sqrt{\frac{\mu_4 - \sigma^4}{n}}$$

 μ_4 – fourth central moment:

$$\mu_4 = \frac{1}{n} \sum_{i=1}^n \left(r_i - \overline{r}\right)^4$$

Efficiency

Resolution

Bias

Total and differential $t \bar t$ production cross sections

Differential cross section:

$$rac{\mathrm{d}\sigma}{d\mathrm{y}} = rac{N_{\mathrm{sig}}}{ELB\Delta Y} \quad ext{where } N_{\mathrm{sig}} = N_{\mathrm{DATA}} - N_{\mathrm{MC\ background}},$$

$$E = \frac{N_{\text{MCreco}}}{N_{\text{MCgen}}} - \text{efficiency}$$

$$L = 2.5 \text{ fb}^{-1}$$
 – luminosity, $B = 4.6\%$ – branching ratio

Total cross section:

$$\sigma = \int \frac{\mathrm{d}\sigma}{d\mathbf{y}}$$

Differential cross sections

Total cross sections

CMS result at
$$\sqrt{s}$$
 = 7 TeV:

$$\sigma_{t\bar{t}} = 173.6 \pm 2.1 (\mathrm{stat})^{+4.5}_{-4.0} (\mathrm{syst}) \pm 3.8 (\mathrm{lumi})$$

FKR

LKR

Parameter	Total cross section $\sigma \pm \Delta \sigma$, pb	$\varepsilon, \%$
$\vec{p}_T(t\bar{t})$	176.2 ± 4.1	1.5
$y(t\overline{t})$	182.4 ± 5.1	5.0
$M(t\bar{t})$	169.8 ± 4.0	2.2
$\varphi(t\bar{t})$	160.5 ± 4.2	8.2

Parameter	Total cross section $\sigma \pm \Delta \sigma$, pb	$\varepsilon, \%$
$\vec{p}_T(tar{t})$	175.2 ± 4.1	1
$y(t\bar{t})$	184.5 ± 5.1	6
$M(t\bar{t})$	173.1 ± 4.0	0.3
$\varphi(t\bar{t})$	160.5 ± 4.2	7.5

SKR

Parameter	Total cross section $\sigma \pm \Delta \sigma$, pb	$\varepsilon, \%$
$\vec{p}_T(t\overline{t})$	171.6 ± 4.0	1.5
$y(t\overline{t})$	166.8 ± 5.2	1.1
$M(t\overline{t})$	158.7 ± 4.4	8.5
$\varphi(t\bar{t})$	158.7 ± 4.2	8.5

Conclusion

- Three analytical reconstruction methods of the $t \bar t$ system were studied using CMS Open Data
- Efficiency, resolution, and parameter bias were determined for each method; results agree with CMS
- For the first time, these characteristics were studied as a function of azimuthal angle, showing detector resolution asymmetry
- LKR is optimal for reconstructing the $t\bar{t}$ kinematics, while FKR is optimal for reconstructing t and \bar{t} separately
- Total and differential $t\bar{t}$ production cross sections were obtained relative to various kinematic variables
- Results are consistent with CMS measurements within statistical uncertainties
- Demonstrated that CMS Open Data allow performing full-scale physics research.

Next steps

- Improvement of Loose kinematic reconstruction: better constraints and improved analysis
- Addition of new variable $\Delta \varphi_{t\bar{t}}$
- Development of new reconstruction methods

Thank you for your attention!