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Motivation
1) Some systematic uncertainties can be well estimated:

• Theory systematics 
• Two points systematics ….

• Related to stat. error of control measurements
• Related to size of MC event sample 

2) But they can also be quite uncertain:

2

https://xkcd.com/2110/ 

References: 
Full model: Eur. Phys. J. C 85.2 (2025)
My thesis: RHUL pure
Standalone toolkit: GitHub
Higher order asymptotics studies: Eur. Phys. J. C 
(2023) 83:1100

https://link.springer.com/article/10.1140/epjc/s10052-025-13884-w
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• Non-trivial consequences:

• Fits are pulled less by incompatible data
• Incompatible data are treated as an extra source of uncertainty resulting 

in inflated confidence intervals
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Formulation of the problem

• Suppose measurements 𝒚 have a probability density 𝑃(𝒚|𝝁, 𝜽)
• 𝝁 = Parameters of interest 
• 𝜽 = Nuisance parameters

• Auxiliary Measurements 𝒖 are used to provide info on nuisance parameters and are (often) 
assumed to be independently Gaussian distributed

• The resulting Likelihood is:

𝐿 𝝁, 𝜽 = 𝑃 𝒚, 𝒖 𝝁, 𝜽 = 𝑃 𝒚|𝝁, 𝜽 ×-
!

1
2𝜋𝜎"!

𝑒# "!#$! "/&'#!
"

4

Can be a real measurement 
or just our best guess based 
on theoretical reasons
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• And the log Likelihood:

log 𝐿 𝝁, 𝜽 = log	𝑃 𝒚|𝝁, 𝜽 	−8
(𝒖𝒊 − 𝜽𝒊)𝟐

𝟐𝝈𝒖𝒊
𝟐

5

Can be a real measurement 
or just our best guess based 
on theoretical reasons
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Can be a real measurement 
or just our best guess based 
on theoretical reasons

Let systematic errors be 
potentially uncertain!



Gamma Variance Model (GVM)

!
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𝟐 𝐥𝐨𝐠 𝟏 + 𝟐𝜺𝒊𝟐
(𝒖𝒊 − 𝜽𝒊)𝟐
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𝟐!

%
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• The original quadratic terms in the log likelihood replaced by logarithmic terms:
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𝛆 = error-on-error parameter

𝛆 = 0.3 means 30% 
uncertainty on 𝝈
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• The original quadratic terms in the log likelihood replaced by logarithmic terms:

• Equivalent to switch from Gaussian constraints to Student’s t constraints for systematics: 
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𝛆 = error-on-error parameter

𝛆 = 0.3 means 30% 
uncertainty on 𝝈
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Gamma Variance Model (GVM)
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Fitting of a curve: compatible measurements 

𝝐 = 𝟎

• Fit of a quadratic function with two outliers

𝑦0	~	𝑓 𝑥0 +	𝜽𝒊

𝑓 𝑥0 = 	𝒂𝑥02 + 𝒃𝑥 + 𝒄

Params of interest
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Fitting of a curve: compatible measurements 
• Fit of a quadratic function with two outliers

𝑦0	~	𝑓 𝑥0 +	𝜽𝒊

𝑓 𝑥0 = 	𝒂𝑥02 + 𝒃𝑥 + 𝒄

Params of interest

𝝐 = 𝟎. 𝟔



Complete model
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• Gamma Variance Model:

𝜒; =)
<

𝑦< − 𝑓<(𝒂) − ∑= Γ<=𝜃= ;

𝜎<;
+)

=

𝟏 +
𝟏
𝟐𝜺𝒊𝟐

𝐥𝐨𝐠 𝟏 + 𝟐𝜺𝒊𝟐𝜽𝒊
𝟐

• Appliable both to addictive and multiplicative systematics as only the 
systematic terms in the chi2 are being changed
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𝜒2 =-
0

𝑦0 − 𝑓(𝒂) − ∑3 Γ03𝜃3 2

𝜎02
+-

3

𝟏 +
𝟏
𝟐𝜺𝒊𝟐

𝐥𝐨𝐠 𝟏 + 𝟐𝜺𝒊𝟐𝜽𝒊
𝟐

• How do I minimize with respect to 𝜃?
• Numerically -> Treat 𝜃 as external
• Analytically -> Expand the log in 𝜺 

• In general just a subsample of systematics need a numerical minimization 
(only those with Large pulls) 

• All the others can be minimized with the analytical approach



Bartlett correction
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• Correction factors needed to account for the non-Gaussianity of the 𝜒2 (log-terms)

• Goodness-of-fit: 𝜒2 	→ 4!

𝒃𝝌𝟐

• Covariance matrix 𝑉 → 𝑉	 ∗ 𝒃𝑽	

• In general 𝒃𝝌𝟐 ≠ 𝒃𝑽

• Non-negligible if number EonE > ~10
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• Steering.txt
• Specify whether to treat each systematic uncertainty as External or Nuisance 

(already implemented).
• Specify the error-on-error value.
• Specify the number of iterations for the analytical procedure.
• Specify whether to enable Bartlett corrections.
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• Systematics.inc
• Initialize errors-on-errors related variables
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• Read_steer.f
1. Set defaults (Set_Defaults)
2. Read steering file (read_systematics)
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Code is thoroughly commented
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• getchisquare.f

chi2_calc_chi2: Set log-constrain if EonE are active for systematic K



21

chi2_calc_syst_shifts: Iterate to minimize analytically sources with active EonE
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chi2_calc_syst_shifts: Compute Bartlett factors, if EnableBartlett is set to True
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• fcn.f

Process Bartlett factors
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Apply Bartlett factors only when printing the results. The function’s return value is left unchanged, so other methods 
that call it are not affected.
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• error_bands_pumplin.f

Error_Bands_Pumplin: Compute Bartlett factors to rescale confidence intervals
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Error_Bands_Pumplin: Apply these factors to the eigen-vector shifts

ErrBandsSym: same implementation 
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PDF fits
PDF fits determine the parton momentum distributions inside hadrons from a global set 
of experimental cross-section data.

Mutual tension:

• PDFs from different experiments often 
disagree at the level of their quoted 
experimental uncertainties

• When combined they often yield values	𝜒&/
𝐷𝑂𝐹 > 	1

• AIm: assign “errors on errors” to the 
experimental uncertainties of the fit dataset
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Why 𝑻 > 𝟏:

• Misestimated errors/correlations
• Parametrization/fit 
• Theoretical predictions
• Non-Gaussian likelihoods

PDF fits

[*] Eur. Phys. J. C 63 (2009)

Problem: Often in PDF fits one finds values of 4
!

789
> 1 due to tensions among diverse datasets  

Solution: In PDF fits a tolerance[*] 𝑇 > 1 replaces Δ𝜒2 = 1 by Δ𝜒2 = 𝑇2so that the quoted 
confidence intervals have correct coverage

https://link.springer.com/article/10.1140/epjc/s10052-009-1072-5
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Why 𝑻 > 𝟏:

• Misestimated errors/correlations
• Parametrization/fit 
• Theoretical predictions
• Non-Gaussian likelihoods

PDF fits

[*] Eur. Phys. J. C 63 (2009)

Problem: Often in PDF fits one finds values of 4
!

789
> 1 due to tensions among diverse datasets  

Solution: In PDF fits a tolerance[*] 𝑇 > 1 replaces Δ𝜒2 = 1 by Δ𝜒2 = 𝑇2so that the quoted 
confidence intervals have correct coverage

These two points are addressed by the errors-on-errors 
framework simultaneously

https://link.springer.com/article/10.1140/epjc/s10052-009-1072-5
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HERA combined dataset

• With 𝜖 = 0, we reproduce the results 
of the Hera fit:

• We use the fit setup and 
parametrization of the combined 
HERA dataset paper[*]

𝜒2

𝐷𝑂𝐹
=
1363
1131 

𝑄( = 10 GeV2

[*]: Eur. Phys. J. C 75.12 (2015)

https://link.springer.com/article/10.1140/epjc/s10052-015-3710-4
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• 169 systematic sources in the fit (Bartlett factor 
matters!)

• Group them in three categories[*]

• ”Ugly” systematics 𝝐𝒔 = 𝟎. 𝟔 (32)
• ”Bad” systematics 𝝐𝒔 = 𝟎. 𝟑 (12)
• ”Good” systematics 𝝐𝒔 = 𝟎. 𝟎 (125)

HERA combined dataset

𝜒2

𝐷𝑂𝐹
=
1363
1131 

1315
1131 

[*] backup
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1. Valence up-quark PDF

HERA combined dataset (preliminary)

𝑸𝟐 = 𝟏. 𝟗 GeV2
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1. Valence down-quark PDF

HERA combined dataset (preliminary)

𝑸𝟐 = 𝟏. 𝟗 GeV2
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𝑸𝟐 = 𝟏. 𝟗 GeV2

2. Gluon PDF

HERA combined dataset (preliminary)
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2. Gluon PDF

Comments:
• PDFs are modified in regions where the data are less well 

modelled or exhibit tensions

• Specifically, low 𝑄( region (3.5 < 𝑄( < 10) GeV2

HERA combined dataset (preliminary)

𝑸𝟐 = 𝟏. 𝟗 GeV2



Thank you for your attention



Back-up slides 
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Particle physics experiments face a vast variety of systematic 
uncertainties*:

• “Good” Systematics: 
• Statistically driven uncertainties (your own calibrations)
• Clear probabilistic model

• “Bad” Systematics: 
• Do not reliably improve with more data
• E.g: external results, analysis methodology biases, …

• “Ugly” Systematics: 
• Theory uncertainties 
• No well-defined sampling distribution
• Treated via ad-hoc prescriptions 

Motivation

*Pekka Sinervo – PHYSTAT 2003, Nicholas Wardle 

https://www.birs.ca/workshops/2023/23w5096/files/Nicholas%20Wardle/PhysicistsSummary_NWardle.pdf
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Ugly systematics: discrete choices

Compare two models 𝒪D and 𝒪2 and define:

L𝒪 =
𝒪D + 𝒪2

2
	 Δ𝒪 =

𝒪D − 𝒪2
2

• If 𝒪Dand 𝒪2 are both biased in the same way    →   Δ𝒪 underestimated
• If 𝒪D	accurate and 𝒪2 is poor                                 →    Δ𝒪 overestimated

• The average prediction L𝒪 may have no physical 
meaning (Phillip Litchfield two lane traffic example)
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Ugly systematics: parameter variation

• Some systematics uncertainties have a parametric description
• We model an observable as 𝒪 𝜃 :

𝒪EFGH = 𝒪 𝜃I ± Δ𝒪

• We vary 𝜃 to estimate Δ𝒪
• Ex: Renormalization scale variation

*Frank Tackmann example

https://www.birs.ca/workshops/2023/23w5096/files/Frank%20Tackmann/2023-04-25_BIRS_theory_unc_FT_2.pdf
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Gamma Distributions

𝒗~
𝜷𝜶

𝜞(𝜶)
𝒗𝜶K𝟏𝒆K𝜷𝒗

𝜶 =
𝟏
𝟒𝜺𝒊

𝟐 	 𝜷 =
𝟏

𝟒𝜺𝒊
𝟐𝝈𝒖𝒊

𝟐

• 𝝈𝒖𝒊 	Systematic Error

• 𝜺𝒊 =
𝟏
𝟐
	𝝈𝒗𝒊
𝝈𝒖𝒊
𝟐 ≅ 𝒗𝒊

𝝈𝒖𝒊
	 relative error on 𝝈𝒖𝒊 : “Error on error”

• Treat the systematic variances 𝝈𝒖𝒊
𝟐  are adjustable parameters (nuisance 

parameter).
• Suppose their best estimates 𝒗𝒊 are gamma distributed:
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Gamma Variance Model (GVM)

• The likelihood is modified as follows: 

𝐿 𝝁, 𝜽, 𝝈𝒖𝒊
𝟐 = 𝑃 𝒚 𝝁, 𝜽 	×	V

%

1
2𝜋𝜎)"

𝑒* )"*+" #/(𝝈𝒖𝒊
𝟐
	×

𝜷𝒊
𝜶𝒊

𝜞(𝜶𝒊)
𝒗𝒊
𝜶𝒊*𝟏𝒆*𝜷𝒊𝒗𝒊

• One can profile over 𝝈𝒖𝒊
𝟐  in closed form:

log 𝐿2 𝝁, 𝜽  = 	 log 𝑃 𝒚|𝝁, 𝜽 −
1
2
!
%

𝟏 +
𝟏
𝟐𝜺𝒊𝟐

𝐥𝐨𝐠 𝟏 + 𝟐𝜺𝒊𝟐
(𝒖𝒊 − 𝜽𝒊)𝟐

𝒗𝒊

• We call this model the Gamma Variance Model (GVM)

(see: G. Cowan, Eur. Phys. J. C (2019) 79:133; arXiv:1809.05778)



• Gamma distributions allow to parametrize distributions of positive 
defined variables (like estimates of variances)

• Using Gamma distributions it is possible to profile in close form over 
𝜎<; 

Motivation for the GVM
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• Gamma distributions include the case where the variance is estimate from 
a real dataset of control measurements:

𝑣! =
1

𝑛! − 1
& 𝑢!,# − (𝑢!

$	

• 𝑛 − 1 𝑣!/𝜎%,
$  follows a 𝜒&'($  distribution and 𝑣) a Gamma distribution 

with:
 

𝛼" =
𝑛" − 1
2

𝛽" =
𝑛" − 1
2𝜎#!

$

Motivation for the GVM
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• BLUE (Best Linear Unbiased Estimators) approach to combinations:

𝜒; =)
<

𝑦< − 𝑓 𝒂 𝑉<STU(𝑦S − 𝑓(𝒂))

𝑉<S = 𝑉<S
(=VWV) + 𝑉<S

(=X=V)

• 𝑉<S
(=VWV): Statistical covariance matrix.

• 𝑉<S
(=X=V): Covariance matrix induced by systematic source.

• 𝑉<S
(=X=V) = ∑=𝑉<S

(=)

From BLUE to the Gamma Variance Model
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• Nuisance parameters approach:

𝜒; =)
<

𝑦< − 𝑓(𝒂) − ∑= Γ<=𝜃= ;

𝜎<;
+)

=

𝜃Y;

From BLUE to the Gamma Variance Model

Magnitude of the bias induced by 
the systematic source s
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• Nuisance parameters approach:

𝜒; =)
<

𝑦< − 𝑓(𝒂) − ∑= Γ<=𝜃= ;

𝜎<;
+)

=

𝜃Y;

• Connection:

𝑉<S
(=X=V) =)

=

𝑉<S
(=)

𝑉<S
(=) =	Γ<=ΓS=

From BLUE to the Gamma Variance Model

Magnitude of the bias induced by 
the systematic source s
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• Gamma Variance Model:

𝜒; =)
<

𝑦< − 𝑓(𝒂) − ∑= Γ<=𝜃= ;

𝜎<;
+)

=

𝟏 +
𝟏
𝟐𝜺𝒊𝟐

𝐥𝐨𝐠 𝟏 + 𝟐𝜺𝒊𝟐𝜽𝒊
𝟐

• What to do if we do not have access to the factors Γ03 (we only know 
𝑉0a
(3b3E))?

𝑉0a
(3b3E) =-

3

𝑉0a
(3)
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• Switch to a nuisance parameters approach:

𝜒; =)
<

𝑦< − 𝜇 − 𝜃< ;

𝜎<;
+)

<S

𝜃<𝐶<STU𝜃S

𝐶<S = 𝑉<S
(=)

• Substitute quadratic term with log-constraint:

From BLUE to the Gamma Variance Model

)
<S

𝜽𝒊𝑪𝒊𝒋T𝟏𝜽𝒋 )
<

𝑵 +
𝟏
𝟐𝜺𝒊𝟐

𝐥𝐨𝐠 𝟏 + 𝟐𝜺𝒊𝟐𝜽𝒊𝑪𝒊𝒋T𝟏𝜽𝒋

Proof is non-trivial!



• The Hessian method is based on the assumption that the 𝜒2 follows a 𝜒2 
distribution.

• Our “goodness-of-fit” statistics q is is not a 𝜒2 so will will not follow exactly a 𝜒2 
for large values of 𝜖2

Large literature on the topic:
• Bartlett, M. S. (1937) Proceedings of the Royal Society A, 160, 268–282)
• Applied Asymptotics Case Studies in Small-Sample Statistics by A. R. Brazzale, A. C. Davison and N. 

Reid)
• Canonero, E., Brazzale, A.R. & Cowan, Eur. Phys. J. C 83, 1100 (2023). 

Bartlett Correction
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Bartlett Correction

• Modify the test statistic 𝑞 so that its distribution is closer to a 𝜒2	:
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