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Motivation

1) Some systematic uncertainties can be well estimated:

* Related to stat. error of control measurements
* Related to size of MC event sample

2) But they can also be quite uncertain:

* Theory systematics
* Two points systematics ....
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Full model: Eur. Phys. J. C 85.2 (2025)

My thesis: RHUL pure

Standalone toolkit: GitHub

Higher order asymptotics studies: Eur. Phys. J. C
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Motivation

1) Some systematic uncertainties can be well estimated:

 Related to stat. error of control measurements https:f/xkcd.com/2110/
* Related to size of MC event sample

2) But they can also be quite uncertain:

* Theory systematics References:

* Two points systematics .... Full model: Eur. Phys. J. C 85.2 (2025)
My thesis: RHUL pure

Standalone toolkit: GitHub
Higher order asymptotics studies: Eur. Phys. J. C

* Non-trivial consequences: (2023) 83:1100

 Fits are pulled less by incompatible data
* Incompatible data are treated as an extra source of uncertainty resulting

in inflated confidence intervals
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Formulation of the problem - L.

* Suppose measurements y have a probability density P(v|u, 0)
e u = Parameters of interest
* 0 = Nuisance parameters

* Auxiliary Measurements 1 are used to provide info on nuisance parameters and are (often)

assumed to be independently Gaussian distributed
Can be a real measurement

or just our best guess based

* The resulting Likelihood is: 7
/ on theoretical reasons

1 )
L ,0 =P ,u ,0 =P ,0)( —e_(ui_ei) /ZO'ui
(n,0) = P(y,ulp,0) = P(y|p, 9) Um%
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Suppose measurements y have a probability density P(y|u, 9)
e u = Parameters of interest
* 0 = Nuisance parameters

Auxiliary Measurements 1 are used to provide info on nuisance parameters and are (often)

assumed to be independently Gaussian distributed
Can be a real measurement
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And the log Likelihood:

. _Aa)N2
M Let systematic errors be
2 0'12%. potentially uncertain!

logL(p, 8) = log P(y|1, 0) — Z



Gamma Variance Model (GVM) 2

* The original quadratic terms in the log likelihood replaced by logarithmic terms:

€ = error-on-error parameter

2
(ui - Bi)z 1 2 (u'i - 01)
E : 2 52 > Z Lt 22 log(1+2¢ o2 € = 0.3 means 30%
u; i

- i i
t uncertainty on o
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Gamma Variance Model (GVM)

* The original quadratic terms in the log likelihood replaced by logarithmic terms:
&€ = error-on-error parameter

2
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Z 202, . t 2¢; log| 1+ 2, oy, € = 0.3 means 30%
o l uncertainty on o

* Equivalent to switch from Gaussian constraints to Student’s t constraints for systematics:
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f(x)

Fitting of a curve: compatible measurements

 Fit of a quadratic function with two outliers
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yi ~ f(x;)+0;

Params of interest

f(x;)) = axf + bx + ¢
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 Fit of a quadratic function with two outliers
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Fitting of a curve: compatible measurements o .

 Fit of a quadratic function with two outliers

Fitted Curve with € = 0.41
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Fitting of a curve: compatible measurements

 Fit of a quadratic function with two outliers
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yi ~ f(x;)+0;

Params of interest

f(x;)) = axf + bx + ¢
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Complete model S |

e Gamma Variance Model:

. — f. _ spn )2
XZ :z(yl fl(a) ~ ZSFL Hs) +Z<1+%>108(1+2€%9i2)

oF - 2&;

* Appliable both to addictive and multiplicative systematics as only the
systematic terms in the chi2 are being changed

13
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. — — S 2
XZ — z (YL f(a) > Zs Fl Hs) _I_z (1 _*_iz) log(l + ZglgeiZ)

oF - 2¢&;

 How do | minimize with respect to 67
* Numerically -> Treat 6 as external
* Analytically -> Expand the log in &

* In general just a subsample of systematics need a numerical minimization
(only those with Large pulls)

* All the others can be minimized with the analytical approach

14



Bartlett correction ROVAL ar

* Correction factors needed to account for the non-Gaussianity of the x? (log-terms)

2
 Goodness-of-fit: y? — —If
2

X

* Covariance matrixV -V x by,

* Ingeneral b > # by

* Non-negligible if number EonE > ~10

15
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* Steering.txt
» Specify whether to treat each systematic uncertainty as External or Nuisance
(already implemented).
* Specify the error-on-error value.
» Specify the number of iterations for the analytical procedure.
» Specify whether to enable Bartlett corrections.

&Systematics
ListOfSources = 'sysHZComb1@53:E', 'proc_tb21:E'

Epsilon = 0.61, 0.61

n_iterations = 4
Enable_Bartlett = .true.

&End

16
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e Systematics.inc
* |nitialize errors-on-errors related variables

C Errors-on-Errors settings
logical EoEEnabled
integer EoE_n_iterations
logical EoEActive(NSYSMAX)
double precision EoEEpsilon(NSYSMAX)

common/CEonE/ EoEEnabled, EoE_n_iterations, EoEActive, EoEEpsilon

Bartlett corrections for EoE

logical BartlettEnabled

double precision BartlettLRFactor

double precision BartlettGoFFactor

double precision BartlettSysFactor(NSysMax)

common/CBartlett/ BartlettEnabled, BartlettLRFactor, BartlettGoFFactor, BartlettSysFactor

17
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e Read steer.f

1. Set defaults (Set_Defaults)
2. Read steering file (read_systematics)

C E-on-E defaults
EoEEnabled
EoE_n_iterations
do i=1,NSYSMAX

EoEActive(i)
EoEEpsilon(i)
enddo

C Bartlett defaults
BartlettEnabled
BartlettLRFactor
BartlettGoFFactor
do i=1,NSYSMAX

BartlettSysFactor(i)
enddo

18



C =— Inspect Epsilon() from &Systematics
neps = @
do i=1,nsys
if (Epsilon(i) .gt. -1.0D98) then
if (Epsilon(i) .lt. 0.0D@) then

call hf_errlog(29092502, 'F: Epsilon(i) must be >= @ or unset')
call hf_stop
endif
neps = neps + 1
endif
enddo

C Only proceed if there is at least one non-negative value
if (neps .gt. @) then
if (neps .eq. nsys) then

do i=1,nsys
if (Epsilon(i) .gt. ©9.8D@) then
EoEEpsilon(i) = Epsilon(i)
EoEActive(i) = .true.
else

EoEEpsilon(i) = 0.0D@
EoEActive(i) .false.
endif
enddo
else
call hf_errlog(29092501,
$ 'F: Systematics/Epsilon must be length(NSources)')
call hf_stop
endif
endif

Code is thoroughly commented

HOLLOWAY
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e getchisquare.f

chi2 calc _chi2: Set log-constrain if EonE are active for systematic K

C Correlated chi2 part:
fcorchi2_in = 0.d0@
do k=1, NSys
if (SysForm(k) .eq. isNuisance .or. SysForm(k) .eqg. isExternal) then
if (EoEEnabled .and. EoEActive(k)) then
temp_val = 2.0D@ * EoEEpsilon(k)**2 * rsys_in(k)**2 * SysPriorScale(k)

fcorchi2_in = fcorchi2_in
+ (1.0D0 + 1.0D0/(2.0D@*EcEEpsilon(k)*%2))
* log(1.0D0@ + temp_val)

else
fcorchi2_in = fcorchi2_in + rsys_in(k)*%2 x SysPriorScale(k)
endif
endif

20
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chi2 calc_syst shifts: Iterate to minimize analytically sources with active EonE

C EoE (errors-on-errors) iterations for nuisance sources
if (EoEEnabled) then
do iter = 1, EoE_n_iterations

C reset incremental shifts
do i=1,nsys
shiftl(i) = 0.0D0
enddo

C rebuild A and C; diagonal = prior

do i=1,nsys
C(i) = 0.0D0

do j=1, nsys
A(i,j) = 0.0D0
enddo
C quadratic prior by default; switch to EoE log prior if active (nuisance only)
if ( SysForm(i) .eq. isNuisance ) then
if (EoEActive(i)) then
Numerator_eps = 1.0D@ + 2.0D@ * EoEEpsilon(i)*x2
Denominator_eps = ( 1.0D@ / SysPriorScale(i) )
+ 2.0D@ x EoEEpsilon(i)*k2 * shift@(i)x2

21
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chi2 calc_syst shifts: Compute Bartlett factors, if EnableBartlett is set to True

C Account for Bartlett factors
if (iflag.eq.3) then
if (BartlettEnabled .and. EoEEnabled) then
do i =1, nsys
if (SysForm(i) .eq. isNuisance) then
BartlettSysFactor(i) = 0.0D0
if (EoEActive(i)) then
eps2 = EoEEpsilon(i)*EoEEpsilon(i)
j_ii = A(i,1)
sigma_u2 = ( 1.8D@ / SysPriorScale(i) ) + ( 2.0D@xeps2kshift@(i)xshift@(i) ) / ( 1.8D@ + 2.0D@xeps2 )

ratio j_ii / sigma_u2

b_theta = ( 4.0D@xratio - ratioxratio ) * eps2
BartlettSysFactor(i) = b_theta
endif
endif
enddo
endif
endif

C Apply Bartlett factors to ersys_in
do 1=1,nsys
if ( SysForm(1l) .eq. isNuisance ) then
rsys_in(1l) = shift@(1)
if (iflag.eq.3) then

ersys_in(1) = sqrt(A(1,1)) * ( 1 + BartlettSysFactor(1))
endif

22
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* fcn.f

Process Bartlett factors

! Bartlett-only-for-printing scaling
nExtSyst = @
do i=1,nsys
if ( SysForm(i) .eq. isExternal) then
nExtSyst = nExtSyst + 1
endif
enddo

nPOI = nparFCN - nExtSyst
print %, 'External systs = ', nExtSyst
c_bart_chi2z = 1.0D90
c_bart_ci = 1.0D0
if (BartlettEnabled .and. EoEEnabled) then
if (ndf .gt. @) then
c_bart_chi2 = 1.0D00 / ( 1.8D@ + BartlettGoFFactor / dble(ndf) )
c_bart_ci = sqrt(1.0D@ + BartlettLRFactor / dble(nPOI))
! Warn only when Bartlett is active and reduces printed values
if (c_bart_chi2 .1t. 1.0D0) then
call hf_errlog(25100101,
$'W: c_bart_chi2 < 1; mathematically should be <=1, consider setting Enable_Bartlett = .false.')
endif
endif
endif

23
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Apply Bartlett factors only when printing the results. The function’s return value is left unchanged, so other methods
that call it are not affected.

! Scale ONLY what we print:

chi2out_print = chi2out * c_bart_chi2

24
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 error bands pumplin.f

Error Bands Pumplin: Compute Bartlett factors to rescale confidence intervals

nExtSyst = @
do i=1,nsys
if ( SysForm(i) .eg. isExternal) then
nExtSyst = nExtSyst + 1
endif
enddo

nPOI = nparFCN - nExtSyst
c_BartLR 1.0D0
bart_scale 1.0D0
if (BartlettEnabled .and. EoEEnabled) then
if (nPOI .gt. @) then
c¢_BartLR = 1.0D0 + BartlettLRFactor/dble(nPOI)
bart_scale = sqrt(c_BartLR)
endif
endif

25
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Error Bands Pumplin: Apply these factors to the eigen-vector shifts

C
C Shift parameters by the j-th de-correlated error:
C
do i=1,npar
a(i) = pkeep(i)
iint = iunint(i)
if (iint.gt.@) then
if(doOffset) then
shift = shift_dir * DecorVarShift(iint, j)
else
call MNSTAT(fmin, fedm, errdef, npari, nparx, istat) !> MWEFG for scaling with DeltaChi2>1.0
shift = shift_dir * GetUmat(iint,j)*SQRT(errdef) !> MWEFG for scaling with DeltaChi2>1.0
endif
shift = shift % bart_scale
a(i) = a(i) + shift
endif
enddo ! i

ErrBandsSym: same implementation

26



PDF fits
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PDF fits determine the parton momentum distributions inside hadrons from a global set

of experimental cross-section data.

Mutual tension:

* PDFs from different experiments often
disagree at the level of their quoted
experimental uncertainties

« When combined they often yield values y?/
DOF > 1

* Alm: assign “errors on errors” to the
experimental uncertainties of the fit dataset
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PDF fits L

2
Problem: Often in PDF fits one finds values ofDX—Of > 1 due to tensions among diverse datasets

Solution: In PDF fits a tolerancel™ T > 1 replaces Ay? = 1 by Ay? = T?so that the quoted
confidence intervals have correct coverage

central
0.30 no tolerance (T=1)
with tolerance (T=2) Why T > 1:
0.25
0.20} e Misestimated errors/correlations
E>015_ * Parametrization/fit
2 * Theoretical predictions
0.10f * Non-Gaussian likelihoods
0.05
0.00 .
0 2 4 6 8 10 12

[*] Eur. Phys. J. C 63 (2009)

28
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2
Problem: Often in PDF fits one finds values ofDX—Of > 1 due to tensions among diverse datasets

Solution: In PDF fits a tolerancel™ T > 1 replaces Ay? = 1 by Ay? = T?so that the quoted
confidence intervals have correct coverage

central
0.30f no tolerance (T=1)
with tolerance (T=2) Why > 1:
0.25
0.20F Misestimated errors/correlations
go s * Parametrization/fit
2 . eoretical predictions
0.10¢ Non-Gaussian likelihoods
0.05}
000 . : - L . - B These two points are addressed by the errors-on-errors
x framework simultaneously

[*] Eur. Phys. J. C 63 (2009)
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HERA combined dataset
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02 = 10 GeV?
1.0
— uy
HEEEER dv
---- 0.05xg
0.8 1
——- 0.05 x sea
0.61 //
- /
~
O = ——
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= Ssg
X N
0.4 S
~. \\N\
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\'\. S
0.2 1 T~ SO
.\.\.\ ~.
O — T T T '\'5\'
1074 1073 1072 1071

* With € = 0, we reproduce the results
of the Hera fit:

x? 1363
DOF 1131

* We use the fit setup and
parametrization of the combined
HERA dataset paper!’

[*1: Eur. Phys. J. C 75.12 (2015)
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HERA combined dataset o

* 169 systematic sources in the fit (Bartlett factor
matters!)

 Group them in three categories!’]
« "Ugly” systematics €, = 0.6 (32) XZ _ 1363 1315
- ”Bad” systematics €, = 0.3 (12) DOF 1131 1131
* "Good” systematics € = 0.0 (125)

[*] backup 31



ROYAL

HERA combined dataset (preliminary) Fottovay

1. Valence up-quark PDF

Q% = 1.9 GeV?
1.4
0.6 —— Error-on-error
---- HERAPDF2.0 NNLO 134
054 Q2 =100.00 GeV?
1.2 4
0.4 1
x
§ 0.3
>
0.2 1
0.1
0.0 1
T T T 0.6 T T T
103 102 101 103 102 10t
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HERA combined dataset (preliminary) Fottovay

1. Valence down-quark PDF
Q% = 1.9 GeV?2

| —— Error-on-error
---- HERAPDF2.0 NNLO
Q2 =100.00 GeV?2

1073 1072 107t

33



HERA combined dataset (preliminary) Fottovay

2. Gluon PDF
Q% = 1.9 GeV?

351 —— Error-on-error

---- HERAPDF2.0 NNLO
301 Q2 =100.00 GeV?

254

20+

xg(x)

15 A

10 4

T T T 0.6 T T T
1073 1072 107t 1073 1072 107t
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HERA combined dataset (preliminary)
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2. Gluon PDF
Q% = 1.9 GeV?

25 A

20 A

xg(x)

151

10 4

—— Error-on-error
---- HERAPDF2.0 NNLO
Q?=100.00 GeV?

1073

Comments:

* PDFs are modified in regions where the data are less well
modelled or exhibit tensions

« Specifically, low Q2 region (3.5 < Q? < 10) GeV?

T T
1072 1071
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hank you for your attention
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Motivation 0 |l

Particle physics experiments face a vast variety of systematic
uncertainties™:

 “Good” Systematics:
« Statistically driven uncertainties (your own calibrations)
e Clear probabilistic model

 “Bad” Systematics:
* Do not reliably improve with more data
* E.g: external results, analysis methodology biases, ...

 “Ugly” Systematics:
* Theory uncertainties
* No well-defined sampling distribution
e Treated via ad-hoc prescriptions

*Pekka Sinervo — PHYSTAT 2003, Nicholas Wardle i -



https://www.birs.ca/workshops/2023/23w5096/files/Nicholas%20Wardle/PhysicistsSummary_NWardle.pdf

Ugly systematics: discrete choices

Compare two models 04 and 0, and define:

. 0,+0 0,—0
5 0140, 1010,
2 V2

* The average prediction @ may have no physical
meaning (Phillip Litchfield two lane traffic example)

* If Ojand O, are both biased in the same way - AO underestimated
* If 01 accurate and O, is poor - AO overestimated

39
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Ugly systematics: parameter variation Fo oy

* Some systematics uncertainties have a parametric description

* We model an observable as 0(0):
Otrue = 0(90) + AO

 We vary 6 to estimate AO
 Ex: Renormalization scale variation

s S

0.5 1 2 /M/ r«o 0.5 1 2 /M/’Ao

*Frank Tackmann example

40
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Gamma Distributions w RO

* Treat the systematic variances a,zli are adjustable parameters (nuisance

parameter).
* Suppose their best estimates v; are gamma distributed:

Gamma Distributions for Different € Values

— €=0.5,0=1
U~ v e o — £=0.05,0=1
F(a) A 3-
2
L1 221
a e —
47 4sto7; £,
. Systematic Error 200 025 050 075 100 125 150 175 200
Ui %
1 Oy, V; .
e & = Ea_zl =~ ;/—_‘ relative error on o, : “Error on error”
uj ul-

41



Gamma Variance Model (GVM) 2 L.

* The likelihood is modified as follows:

aij
1 —(ui—Gi)Z/Za%l. X —ﬁl vai_le_ﬁivi

e ;
V2moy, I'(a;) '

L(w0,5%) = Poim o) x | |
i

* One can profile over a,zh_ in closed form:

1 1 , (U — 0,)°
logLp(u,0) = logP(y|u,0) — —2 1+—|log|1+2ef ———
2 L 22 v
l

i i

* We call this model the Gamma Variance Model (GVM)

(see: G. Cowan, Eur. Phys. J. C (2019) 79:133; arXiv:1809.05778)
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Motivation for the GVM R o

 Gamma distributions allow to parametrize distributions of positive
defined variables (like estimates of variances)

e Using Gamma distributions it is possible to profile in close form over
2

0;

43



Motivation for the GVM

HOLLOWAY

* Gamma distributions include the case where the variance is estimate from
a real dataset of control measurements:

1 N2
v = T — 12(”@1 — ;)

* (n - 1v; /o, follows a xZ_, distribution and v; a Gamma distribution
with:

Tli—l

44



From BLUE to the Gamma Variance Model ROVAL ar

e BLUE (Best Linear Unbiased Estimators) approach to combinations:
=) (i - @)V ) - f(@)
i
Vij _ I/i§stat) 4 Vi](.syst)

. I/i§5tat): Statistical covariance matrix.
(syst) . - .
. Vij : Covariance matrix induced by systematic source.
. 17 (5yst) _ (s)
Vim = sV

45



From BLUE to the Gamma Variance Model oL .

. Magnitude of the bias induced by
o NUISance parameters approaCh: / the systematic source s

o _ 2
T ol @ - 26" | X
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From BLUE to the Gamma Variance Model oL .

. Magnitude of the bias induced by
o NUISance parameters approaCh: / the systematic source s

s i - f(a)a; 26" | X

e Connection:
(syst) __ E (s)
Vi i V

(s) _
I/l] — l"iSl"jS
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e Gamma Variance Model:

. — _ s )2
(yl f(a) ZZSFL Hs) _I_z(l_l_iz) log(l-l—Zeleiz)

o 2&;

S

* What to do if we do not have access to the factors I}’ (we only know
Vi§syst))?

(syst) _ (s)
\/Vl- ; Z A

48



From BLUE to the Gamma Variance Model

* Switch to a nuisance parameters approach:

Proof is non-trivial!

z(y‘ k=0 296‘19

_y®
Cij = V;

 Substitute quadratic term with log-constraint:

-1 N+ 1o (1+2€/6,C;;'0)
ij ]

i l
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Bartlett Correction ROVAL ar

* The Hessian method is based on the assumption that the y? follows a y?
distribution.

 Our “goodness-of-fit” statistics g is is not a y? so will will not follow exactly a y?
for large values of €2

Large literature on the topic:

* Bartlett, M. S. (1937) Proceedings of the Royal Society A, 160, 268-282)

* Applied Asymptotics Case Studies in Small-Sample Statistics by A. R. Brazzale, A. C. Davison and N.
Reid)

* Canonero, E., Brazzale, A.R. & Cowan, Eur. Phys. J. C 83, 1100 (2023).
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« Modify the test statistic g so that its distribution is closer to a y? :

q =Y
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« Modify the test statistic g so that its distribution is closer to a y? :
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« Modify the test statistic g so that its distribution is closer to a y? :

/‘\_) Expectation value in

m the asymptotic limit

* (degrees of freedom
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Exact
expectation
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q~x*+ 0(e*)

a"~x* +0(e?)




