Test-beam Measurements of Instrumented Sensor Planes for a Highly Compact and Granular Electromagnetic Calorimeter

Grzegorz Grzelak (on behalf of the LUXE ECAL group)

Faculty of Physics University of Warsaw

42nd International Conference on High Energy Physics, ICHEP-2024, 17 - 24 July 2024, Prague

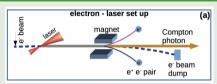
The LUXE project at DESY, Hamburg

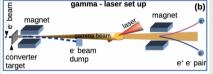
LUXE: Laser Und XFEL Experiment

LUXE milestones documents:

- LOI (2019) 1909.00860
- CDR (2021) EPJ ST 230, 2445 2560
- TDR (2023) 2308.00515 (EPJ ST Accepted)

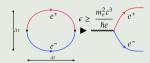
LUXE Collaboration




- at DESY as the host laboratory
- at Eu.XFEL 16.5 GeV electron beam
- over 20 participating institutes
- about 150 active scientists

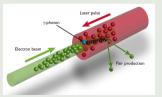
ICHEP 2024

Physics Programme at LUXE: Study of QED in the strong field non-perturbative regime


LUXE: Two modes of operation

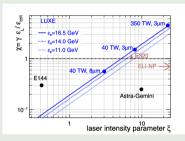
- e-laser: using 16.5 GeV XFEL e⁻ beam
- ullet γ -laser: using bremsstrahlung γ photons
- collide them with High Power (40 or 350 TW) optical UV Laser (HPL) [phase-0 / phase-1]

non-linear and non-perturbative QED



physics at and above Schwinger limit:

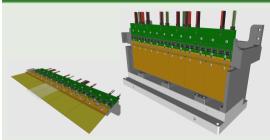
$${\cal E}_{cr} = rac{m_e^2 c^3}{\hbar e} = 1.3 imes 10^{18} \, {
m V/m},$$


 \bullet boosted frame: $\chi = \gamma \frac{\mathcal{E}_{\mathit{HPL}}}{\mathcal{E}_{\mathit{cr}}}$

$$\textit{RMS}(\mathcal{E}_{HPL}) \sim 10^{14} \: \mathrm{V/m} \ (\times 10^4 \: \mathrm{e^- \ boost})$$

LUXE: the detectors challenge: very high rate of particles

Parameters space and e^+ rate

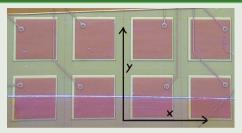


• laser intensity, dimensionless amplitude of $\mathscr E$ field): $\xi = \frac{m_e \mathscr E_L}{\omega_L \mathscr E_{ext}}$, ω_L - laser frequency

expected positron rate: 10⁻⁵ – 10⁶ per BX,
 EM showers overlap at high multiplicity

Solution for e^+ calorimetry: ECALp

- compact, high density sampling calorimeter
- ullet small Moliére radius: \sim 9 mm
- high granularity
- ullet 21 layers of 3.5 mm (1 X_0) tungsten absorber
- 1 mm gaps instrumented with active sensors

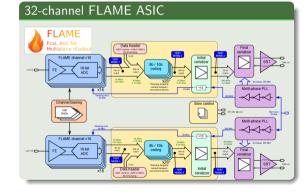

ECALp: semiconductor sensors investigated on the test-beam

Gallium Arsenide sensor:

- National Research Tomsk State University
- GaAs crystals compensated with chromium
- \bullet 4.7 \times 4.7 mm² pads, 0.3 mm gap between pads
- ullet pads are made of 0.05 μ m vanadium layer
- ullet thickness 500 $\mu \mathrm{m}$
- total wafer area: $51.9 \times 75.6 \text{ mm}^2$
- Aluminum traces in the gaps between pads
- better radiation tolerance then silicon

Silicon sensor:

- produced by Hamamatsu (CALICE design)
- ullet Si crystals: p+ on n substrate diodes
- $\bullet~5.5\times5.5~\text{mm}^2$ pads, 0.01 mm gap between pads
- few nm pads Al metalization
- \bullet thickness 500 μ m (320 μ m)
- ullet total wafer area: $89.7 imes 89.7 imes mm^2$
- external kapton fan-outs with copper traces connected to the sensor pads with conductive glue

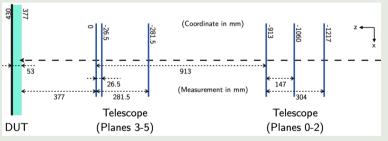

ECAL_p TB ICHEP 2024

FLAME/FLAXE front-end ASIC

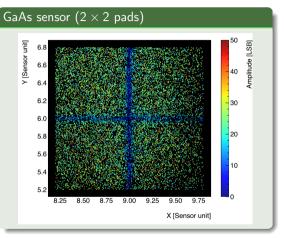
- FLAME (FcaL Asic for Multiplane rEadout) is a 32-channel ASIC in CMOS 130 nm
- 10-bit ADC in each channel, two fast (5.2 Gbps) serializers and data transmitters
- FLAME has been already used in several test-beams of FCAL and LUXE-ECALp collaborations
- final DAQ version will use a new front-end ASIC FLAXE, which is based on FLAME (in progress)

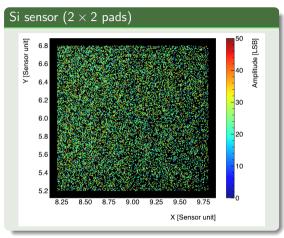
FLAME ASIC specification

- Analog front-end in each channel:
 - ullet CR-RC shaping ($T_{peak}\sim 50$ ns)
 - two switched gains (high gain for MIPs, low gain for showers)
 - $C_{in} \sim 20 40 \text{ pF}$
- 10-bit ADC per channel:
 - $f_{sample} = 20 \text{ MHz}$
 - ENOB > 9.5 (effective resolution)
 - Power < 350 μ W @ 20 MHz

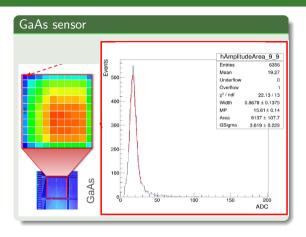


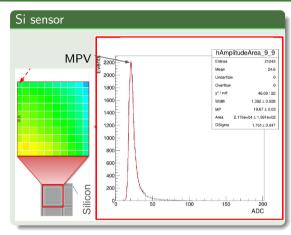
ICHEP 2024


Test beam setup, DESY, Hamburg (September 2022)


Beam telescope, scintillators and Detector Under Test (DUT)

• Electrons arrive from the right, pass the first scintillator, then six ALPIDE pixel sensors, the second scintillator, and hit the sensor, denoted as DUT (Detector under Test) \sim 35 μ m resolution of the track extrapolated from the TB telescope

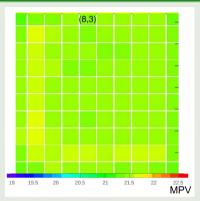

- ullet Two 16 imes 8 pad arrays of Silicon sensors and two 15 imes 10 pad arrays of GaAs sensors were tested on 5 GeV electron beam at the DESY-II facility
- investigated were homogeneity of the sensor response, edge effects and signal sharing between pads
- in addition: test of the FPGA based data on-line preprocessing (amplitude and time reconstruction)



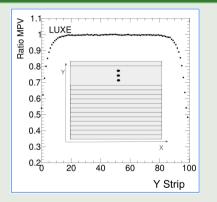
- ullet after alignment with beam telescope (\sim 35 μ m resolution on DUT XY)
- color (Z scale) indicates the size of the signal
- loss of signal for GaAs sensor in the region between pads

Sensor homogeneity study

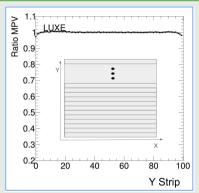
- ullet Pads were subdivided into 10 imes 10 XY sections and plotted was amplitude distribution in each section
- ullet Fits of Landau distribution convoluted with Gaussian o Most Probable Value (MPV) on next page
- color (Z scale) encodes the statistic of hits


Sensor homogeneity study (cont.) : 10×10 pad subsections

GaAs sensor (single pad)

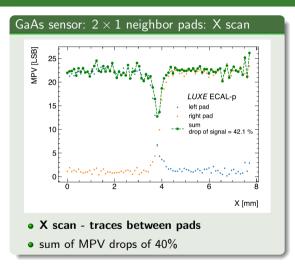

- GaAs: Drop in amplitude around edges and esp. in corners
- color (Z scale) encodes the MIP value

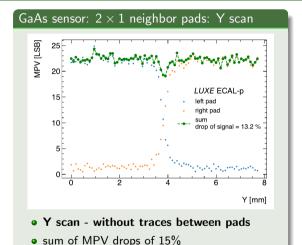
Si sensor (single pad)


- Si: more uniform response, but...
- ... L-shaped area of a bit higher amplitude

GaAs sensor (single pad)

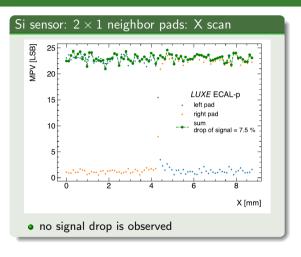
• GaAs Y scan: MPV drop : 50% wrt pad center

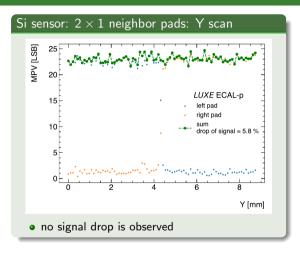

Si sensor (single pad)



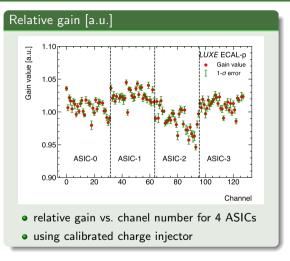
• Si Y scan: MPV drop: 2-3% wrt pad center

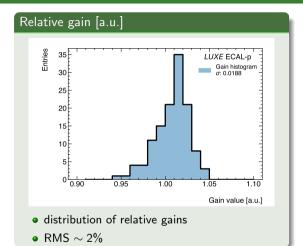
• Normalized to MPV of central strip. Similar response along X direction

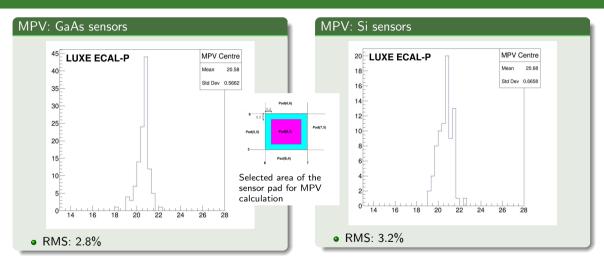

GaAs sensor: signal sharing between pads



- MPV measured as a function of x and y, crossing the area between two pads
- ullet gap between GaAs pads 300 μ m

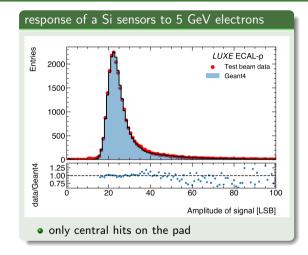

Si sensor: signal sharing between pads




- MPV measured as a function of x and y, crossing the area between two pads
- \bullet gap between Si pads 10 μ m

Uniformity of front-end amplification

• good homogeneity of front-end preamplifiers, some dependence on ASIC fabrication (?)



• MPV distribution after gain correction, excluding edge effect (20% margin)

Comparison with Geant4 MC simulation

response of a Si sensors to 5 GeV electrons

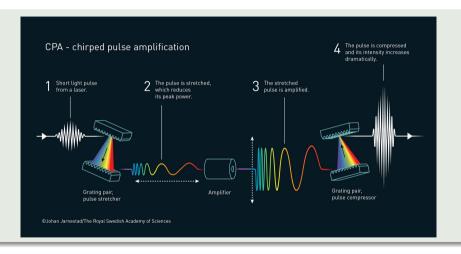
- ullet energy loss dE/dx [GeV] in 500 $\mu{\rm m}$ Si sensor from Geant4
- energy loss converted into number of charge carriers using 3.6 eV per electron-hole pair
- gain of the read-out chain determined from charge injection: 3.45 LSB/fC
- as a cross-check 3.46 LSB/fC was obtained fitting the gain as a free parameter

Summary

- two types of semiconductor sensors (GaAs and Si) for high density EM calorimeters were tested at 5 GeV electron beam at DESY
- energy losses for MIPs are well described by Landau distribution convoluted with Gaussian function
- homogeneity and signal sharing study were performed using hit position from the beam telescope
- for GaAs sensors edge effect are observed related to aluminum tracers and bigger gap between pads (up to 40-50% signal drop)
- for silicon sensor edge effects are barely visible
- after gain correction, in the central region of pads the homogeneity of the sensors amounts to 2.8 and
 3.2 % for the GaAs and Si sensors, respectively
- collected data are in good agreement with Geant4 based MC
- readout electronics absolute gain agrees between MC simulations and independent lab measurement (converting the energy loss into charge and using the gain of the readout chain)

- two types of semiconductor sensors (GaAs and Si) for high density EM calorimeters were tested at 5 GeV electron beam at DESY
- energy losses for MIPs are well described by Landau distribution convoluted with Gaussian function
- homogeneity and signal sharing study were performed using hit position from the beam telescope
- for GaAs sensors edge effect are observed related to aluminum tracers and bigger gap between pads (up to 40-50% signal drop)
- for silicon sensor edge effects are barely visible
- after gain correction, in the central region of pads the homogeneity of the sensors amounts to 2.8 and
 3.2 % for the GaAs and Si sensors, respectively
- collected data are in good agreement with Geant4 based MC
- readout electronics absolute gain agrees between MC simulations and independent lab measurement (converting the energy loss into charge and using the gain of the readout chain)

Thank You Very Much for Your Attention!

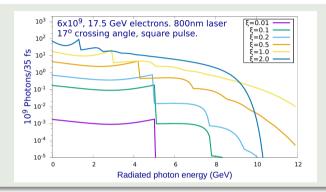

4□ > 4団 > 4 差 > 4 差 > 差 り < ○</p>

18 / 24

BACKUP PLOTS

BACKUP PLOTS FOLLOWS...

CPA: Chirped Pulse Amplification


2018 Nobel Pize Donna Strickland and Gerard Mourou "for method of generating high-intensity, ultra-short optical pulses"

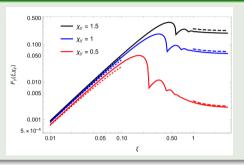
dimensionless intensity parameter (filed energy density) ξ^2

- $\xi^2 = 4\pi\alpha(\frac{\mathscr{E}_L}{m_e\omega_L})^2 = (\frac{m_e\mathscr{E}_L}{\omega_L\mathscr{E}_{cr}})^2$, \leftarrow "classical picture" ω_L laser frequency, ξ "dimensionless amplitude" of \mathscr{E} field
- $\xi^2 = 4\pi\alpha\lambda_L\lambda_C^2n_L$, \leftarrow "quantum picture" λ_L and λ_C - reduced laser and Compton wavelengths, $\lambda_L \sim 1~\mu{\rm m}$ $\lambda_C \sim 10^{-6}~\mu{\rm m}$ n_L - number density of laser photons

• for low and moderate $\xi \lesssim 1$ the probability of net absorption of n laser photons $\propto (\xi^2)^n \sim \alpha^n$ (consistent with perturbative QED vertex counting)

G. Grzelak (University of Warsaw)

- low laser intensity $(\xi) \to \text{KleinNishina process}$
- ξ \nearrow : increasing flux of Compton photons
- $\xi \nearrow$: shift of Compton edge with laser intensity (\rightarrow next page)
- additional structure due to multi-photon absorption


Non-linear Compton γ spectrum

$$e^- + n\gamma_L
ightarrow e^- + \gamma$$

- ullet for monochromatic, circularly polarized laser pulse: $|ec{\mathcal{E}}| = const$
- ullet in transverse plane circular motion of electron with frequency ω_L
- energy accumulated in this transverse degree of freedom can be treated as extra, effective mass of the electron
- electron transverse momentum: $P_{\perp} \sim \xi m$
- \bullet $E^2 = m^2 + P_{\perp}^2 + P_{\parallel}^2 \sim (1 + \xi^2)m^2 + P_{\parallel}^2$
- electron effective mass: $\overline{m} = m\sqrt{1+\xi^2}$
- ightarrow shift of the lowest order Compton edge (scaling as $1/\sqrt{1+\xi^2}$)
- ullet ightarrow can be used to monitor the intensity parameter ξ

G. Grzelak (University of Warsaw)

full calculation and asymptotic behavior (dotted-dashed)

- in a constant static field: $\propto \exp\left(-\pi \frac{\mathscr{E}_{cr}}{\mathscr{E}}\right)$ (Schwinger process)
- in plane wave laser (asymptotic): $\propto \exp\left(-\frac{8}{3}\frac{1}{1+\cos\theta}\frac{m_e}{\omega_I}\frac{\mathcal{E}_{cr}}{\mathcal{E}}\right)$
- \bullet good agreement for $\xi \ll 1$ and $\xi > 1$
- ullet initial growth with ξ then drop due to the Compton edge shift