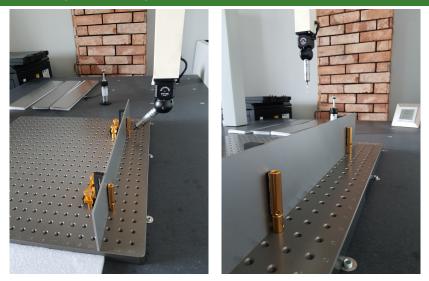
ECAL-P mechanics: tungsten plates CMM measurements

Grzegorz Grzelak, Piotr Zbińkowski, Filip Żarnecki

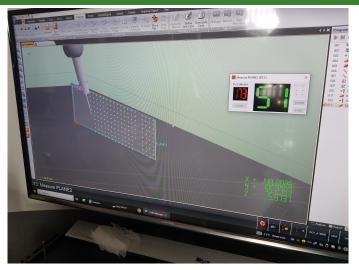
Faculty of Physics University of Warsaw

LUXE ECAL-P meeting 10-JULY-2024

- 3 tungsten plates from Xiamen (purchased by TAU)
 - X1
 - X2
 - X3
- 3 tungsten plates from Beijing (ATM/ATAS) (purchased by UW)
 - B1
 - B2
 - B3


CMM: table and calibration

- CMM self calibration wrt the reference sphere
- CMM XYZ precision \sim 1 2 μm


G. Grzelak (University of Warsaw)

CMM: tungsten montage

- measurement performed in vertical configuration (as in ECALp)
- some dead ares around the support pillars (mainly one side on "plane 2")

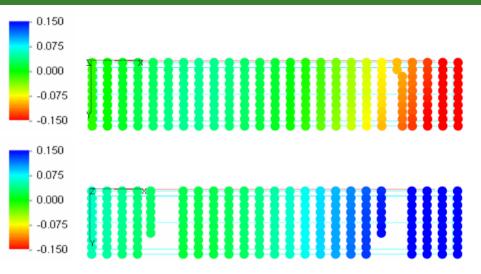
CMM: grid

 $\bullet~\sim 250 = 10 \times 25$ XY points on each side, starting 2.5mm from the edge

some dead ares around the support pillars (mainly one side on "plane 2")

G. Grzelak (University of Warsaw)

XYZ dimensions (mm)			
Plate	X	Y	Z
X1	555.1039	100.0907	3.5593
X2	555.1047	100.0864	3.5429
Х3	555.1388	100.0964	3.5407
B1	555.0785	100.0640	3.5451
B2	555.0654	100.0458	3.5547
B3	555.0637	100.0366	3.5701
Nom	555.00±0.20	100.00±0.20	3.50±0.05

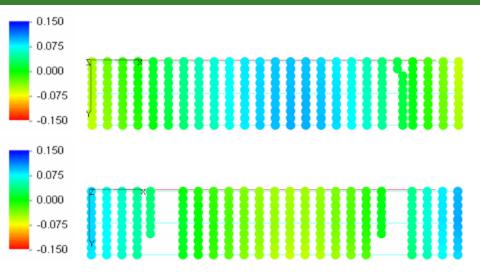

• XYZ: average ? max dev. ? (XY measured "flat on the table")

- Beijing a bit better in XY precision, both within spec.
- in Z both similar, oversized by \sim 50 $\mu\text{m},$ out of spec.

CMM: flatness

- on next pages plotted are deviations (residua) in local Z-direction from the nominal/ideal 555 × 100 × 3.5 mm³ shape fitted as a rigid body (rotation and translation only) to the set of 3D CMM measurements points ("cloud of points")
- the (0,0,0) point is in upper left corner on plane 2
- first points on the circumference are 2.5 mm from the edge (to ensure thickness measurement within the comb/rib area)

CMM: X1 plate: plane 1, 2

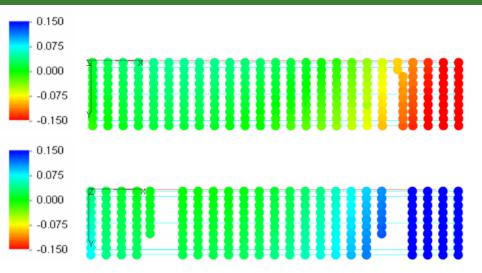

• bending for large X values, \sim 150 $\mu m,$ correlated

• 25% of the length affected

G. Grzelak (University of Warsaw)

24-JAN-2024 8 / 14

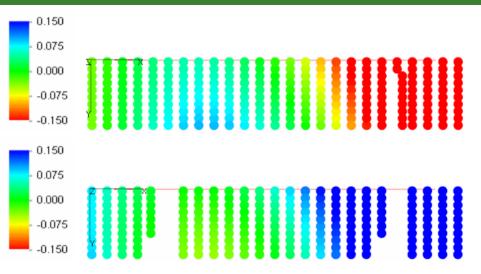
CMM: X2 plate: plane 1, 2


• little "wave" visible, hills and valleys correlated, \sim 75 μ m depth

relatively good plate, best from Xiamen, close to spec.

G. Grzelak (University of Warsaw)

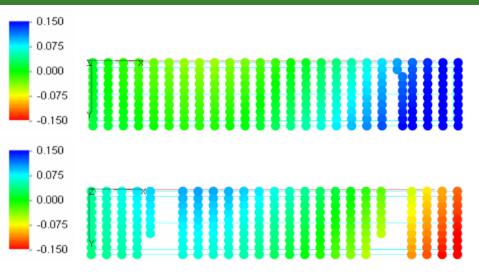
ECAL-LUXE


CMM: X3 plate: plane 1, 2

• similar to X1, > 150 μ m bending for large X

G. Grzelak	(University of Warsaw)
------------	------------------------

CMM: B1 plate: plane 1, 2

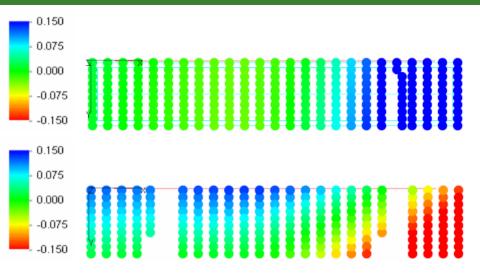


• big bending, > 150 $\mu m,$ for large X plus some "wave" in the middle, ,~ 75 μm

33% of the length affected

G. Grzelak (University of Warsaw)

CMM: B2 plate: plane 1, 2


• bending > 150 $\mu\text{m},$ for large X plus some "wave" in the middle , \sim 75 μm

only 20% of the length affected, best plate from Beijing

G. Grzelak (University of Warsaw)

ECAL-LUXE

CMM: B3 plate: plane 1, 2

• the worst plate, planes not parallel, edge cutting due to non uniform grinding ?

deviations > 150 µm

G. Grzelak (University of Warsaw)

3 ×

Summary

- XY dimensions OK for both vendors
- Z (thickness) on the edge of spec (\gtrsim 50 μ m bigger for all plates)
- flatness/planarity: > 150 μ for majority of plates, see X1-3, B1-3
- usually it is due to the bending (good news ?)
- consumed are more than 200 μ m from the safe margin of our tolerances (50 μ m thickness + > 150 μ m bending)
- anticipated big problems during Si+CF+kaptons+glue sandwich insertion ! The "sandwich" is thicker than 800 μ m !
- for 2025 TB and few sensors under test we can hopefully survive (finding best slots/position along X) and by "shuffling" the tungsten plates
- what for full ECALp prototype ? 1.2 mm gaps !?
- any other ideas ?
- BTW: the flatness < 50 μm claimed by both manufactures were measured probably in position "flat on the table", not in vertical position, we did not specified this...
- so: maybe, if the tension is not very big we can compensate the bending (even partially) in the combs/ribs ?