
QCD modelling

Studies of $p_{\mathrm{T}}^{W}/p_{\mathrm{T}}^{Z}$

• A precise prediction of the ratio of W- and Z- $p_{\rm T}$ distributions, together with the measurement of Z $p_{\rm T}$, gives stringent constraints on the W- $p_{\rm T}$ spectrum.

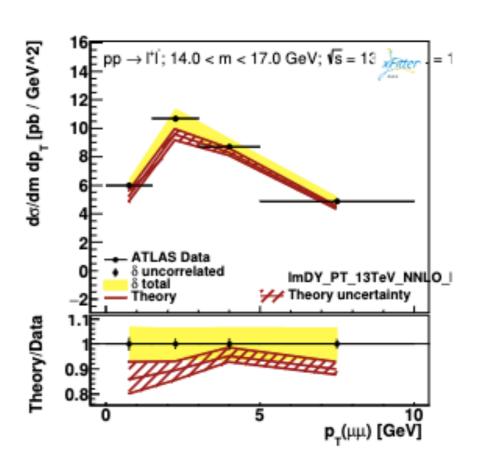
- Since $Z\,p_{
 m T}$ is very well measured, the relevant theoretical uncertainties come from W/Z $p_{
 m T}$ modelling:
 - choice of PDF evolution

- description of heavy-flavour-initiated (HFI) production \rightarrow harder boson p_{T}
- effect of non-perturbative parameters (i.e. g_1) variations.

QCD modelling

QCD fits of low-mass Drell-Yan data

- $pp \to \gamma^*/Z \to \mu\mu$ measurement at $\sqrt{s}=13$ TeV gives unique access to QCD non-perturbative regime.
- $p_{\mathrm{T}}^{\mu\mu}$ measured in 7 invariant mass bins in $12 < m_{\mu\mu} < 56$ GeV.
- Use xFitter + DYTurbo to fit the data and extract non-perturbative QCD parameters


Non perturbative QCD model

 NP model is generally determined from the data, parameters values depend on the chosen prescription to avoid the Landau pole in b-space

$$b_{\star} = \frac{b}{1 + b^2 / b_{\lim}^2}$$

$$S_{\text{NP}}(b) = \exp \left[-g_j(b) - g_K(b) \log \frac{m_{\ell\ell}^2}{Q_0^2} \right] \quad \begin{cases} g_j(b) = \frac{g \, b^2}{\sqrt{1 + \lambda \, b^2}} + \operatorname{sign}(q) \left(1 - \exp \left[-|q| \, b^4 \right] \right) \\ g_K(b) = g_0 \left(1 - \exp \left[-\frac{C_F \alpha_s(b_0/b_*) b^2}{\pi g_0 \, b_{\text{lim}}^2} \right] \right) \end{cases}$$

• g_i functions include a quadratic and a quartic term, with g and q free parameters of the fit

