Results from NA61/SHINE

M. Unger* for the NA61 Collaboration

* Karlsruher Institut für Technologie

NA61 Physics Program - a) Heavy lons

Onset of deconfinement and search for the critical point of strongly interacting matter

extensive scan of system size and energy:

NA61 Physics Program - b) Hadro-Production Measurements for Neutrino Experiments

 ν -beams for long-baseline neutrino oscillation experiments

T2K replica target at NA61 l=90 cm, \emptyset =2.6 cm, λ_{int} =1.9

(extension of ν -program for LAGUNA-LBNO and US experiments (MINER ν A, MINOS, NO ν A) under discussion) reweighting of T2K beam MC to match NA61 measurements:

CERN-PH-EP-2012-188, submitted to NIM

NA61 Physics Program - c) Hadro-Production Measurements for Air Shower Experiments

Muons in UHE Air Showers

energy of last interaction before decay to μ air shower \rightarrow hadron + air $\rightarrow \pi/K + X$

low energy air shower

e.g. KASCADE:

- $E_0 = 10^{15} \text{ eV}$
- *r* = 40-200 m
- $E_{\mu} \geqslant 250 \text{ MeV}$

Muons in UHE Air Showers

energy of last interaction before decay to μ air shower \rightarrow hadron + air $\rightarrow \pi/K + X$

low energy air shower

e.g. KASCADE:

- $E_0 = 10^{19} \text{ eV}$
- *r* = 1000 m
- *E*_μ ≥ 150 MeV

Muons in UHE Air Showers

number of muons depends on energy fraction of produced hadrons

moreover, $p_{\rm T}$ distribution of parent meson determines radial distribution of muons at ground (given muon production height)

NA61/SHINE Experiment at SPS

π^- +C interaction at 350 GeV/c

- large acceptance \approx 50% at $p_T \leq 2.5 \, {\rm GeV/c}$
- momentum resolution: $\sigma(\boldsymbol{\rho})/\boldsymbol{\rho}^2 \approx 10^{-4} ({\rm GeV/c})^{-1}$
- tracking efficiency: > 95%

Particle Identification

example plots from p+C at 31 GeV/c (2007 data)

Particle Identification

1 GeV/c

	р	yr	$N_{\rm trig}$
π^++C	158	2009	5.5
π^++C		2009	4.6
p+p	13	2010	0.7
p+p	13	2011	1.4
p+p	20	2009	2.2
p+p	31	2009	3.1
p+p	40	2009	5.2
p+p		2009	4.5
p+p	158	2009	
p+p	158	2010	44
p+p	158	2011	15

- beam momentum p in [GeV/c],
- number of triggers N_{trig} in [10⁶] (~85% interaction triggers and ~15% beam triggers)

	р	yr	$N_{\rm trig}$
π^-+C	158	2009	5.5
π^-+C	350	2009	4.6
p+p	13	2010	0.7
p+p	13	2011	1.4
p+p	20	2009	2.2
p+p	31	2009	3.1
p+p	40	2009	5.2
p+p		2009	4.5
p+p	158	2009	
p+p	158	2010	44
p+p	158	2011	15

- beam momentum p in [GeV/c],
- number of triggers N_{trig} in [10⁶] (~85% interaction triggers and ~15% beam triggers)

	р	yr	$N_{\rm trig}$
$\pi^{-}+C$	158	2009	5.5
π^-+C	350	2009	4.6
p+C	31	2007	0.7
p+C	31	2009	5.4
p+p	13	2010	0.7
p+p	13	2011	1.4
p+p	20	2009	2.2
p+p	31	2009	3.1
p+p	40	2009	5.2
p+p		2009	4.5
p+p	158	2009	
p+p	158	2010	44
p+p	158	2011	15

- beam momentum p in [GeV/c],
- number of triggers N_{trig} in [10⁶] (~85% interaction triggers and ~15% beam triggers)

	р	yr	$N_{\rm trig}$
$\pi^+ + C$	158	2009	5.5
π^++C	350	2009	4.6
p+C	31	2007	0.7
p+C	31	2009	5.4
p+p	13	2010	0.7
p+p	13	2011	1.4
p+p	20	2009	2.2
p+p	31	2009	3.1
p+p	40	2009	5.2
p+p	80	2009	4.5
p+p	158	2009	3.5
p+p	158	2010	44
p+p	158	2011	15
p+Pb	158	2012	4.5

- beam momentum p in [GeV/c],
- number of triggers N_{trig} in [10⁶] (~85% interaction triggers and ~15% beam triggers)

Cross Section Measurements with NA61

Schematic of Beam Line:

Cross Section Measurements with NA61

production cross sections:

 $\sigma_{\rm prod} = \sigma_{\rm tot} - \sigma_{\rm qela} - \sigma_{\rm ela}$

Analysis of 2007 data (p + C at 31 GeV/c)

three independent analyses:

- negative hadrons (model corr.)
- dE/dx-only at low p
- dE/dx and TOF at medium p

spectrum corrections

- acceptance ≥ 99%
- reconstruction efficiency \ge 96%
- pion decay $\leq 10\%$
- feed-down $\leq 10\%$

NA61/SHINE, Phys. Rev. C84 (2011) 034604

comparison to FLUKA2008.3b

comparison to UrQMD1.3.1

comparison to patched UrQMD1.3.1

(V. Uzhinsky, arXiv:1107.0374v1 [hep-ph])

comparison to Gheisha2002

Results on Kaon Production in p+C at 31 GeV/c two-dimensional fit: K⁺ Yield:

NA61/SHINE, Phys. Rev. C85 (2012) 035210

Analysis of π^- +C data

- currently: charged hadrons (no PID)
- tracks from main vertex
- correct for
 - feed-down
 - secondary interaction
 - track loss

using MC, but *no* correction $h^- \rightarrow \pi^-$

- fiducial ϕ cuts for geometrical acceptance
- zero-bias data set (beam trigger) to correct min-bias data

Analysis of π^- +C data

define geometrical acceptance:

accept only tracks in Φ -bins with \geq 90% efficiency.

example: positive tracks

π^- +C Correction and Uncertainties

(example: h⁻, 158 GeV/c)

- e^{\pm} contamination at low p, p_T
- model systematics from Δ(VENUS/EPOS) of individual contributions
- total systematics: model correction, normalization, trigger bias, calibration, track topology

π^- +C Correction and Uncertainties

(example: h⁻, 158 GeV/c)

- e^{\pm} contamination at low p, p_T
- model systematics from Δ(VENUS/EPOS) of individual contributions
- total systematics: model correction, normalization, trigger bias, calibration, track topology

require |C-1| < 0.2 and sys.tot. < 20%

Charged Hadron Production in π^- +C at 158 GeV/c

 $p = 0.6 \dots 121 \text{ GeV/c}$ in steps of $\lg p / (\text{GeV}/c) = 0.08$

Charged Hadron Production in π^- +C at 350 GeV/c

 $p = 0.6 \dots 121 \text{ GeV/c}$ in steps of $\lg p / (\text{GeV}/c) = 0.08$

Comparison to QGSJetll

Comparison to Sibyll2.1

Comparison to UrQMD1.3.1 (patched)

Comparison to EPOS1.99

Comparison to Fluka2011

π^\pm - and K⁻-Spectra from p+p Energy Scan

- reference data for system size scan
- h⁻ and dE/dx analysis
- good overall agreement with NA49 at 158 GeV/c
- extensive data set for model-tuning

π^\pm - and K⁻-Spectra from p+p Energy Scan

- reference data for system size scan
- h⁻ and dE/dx analysis
- good overall agreement with NA49 at 158 GeV/c
- extensive data set for model-tuning

Stay Tuned!

p+C update

 \rightarrow factor 10 more statistics

- π+C with dE/dx pid →(anti-)baryon production
- full p+p scan
- strange baryons
- \(\rho_0\)-mesons
- K⁻+C interactions

expected baryon difference in π +C

Summary of NA61 Results

- π^{\pm} and K spectra from p+C at 31 GeV/c
 - published
 - already used for T2K beam MC
 - FLUKA and UrQMD retuned
 - first preliminary K_s^0 -yields (not shown today)
- charged hadron spectra from π^- +C at 158 and 350 GeV/c
 - preliminary
 - Iab-measurement of last stage of UHECR air showers
 - too few particles in models at high $p_{\rm T}$
- π^{\pm} and K spectra from p + p at 40, 80 and 158 GeV/c
 - preliminary
 - provides reference data for system size scan
 - extensive data set for CR model-tuning