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Leading singularities
Leading singularities in planar N = 4 SYM:

contain all information about on-shell scattering amplitudes.

finite number of them for given n and k at all loops, as a
consequence of their Grassmanian origin.

They are represented by a special class of on-shell diagrams.

In this case leading singularity = maximal cut = on-shell diagram.
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Composite leading singularities
Let us take a trivial example of 4pt 2-loop amplitude. It is given by one
double box + cyclic.

Cut 7 propagators you see and get two graphs that contribute:

Each of them is represented by a function like
∫
dz F (z) =

∫
dz

z(z − 1)〈12〉〈23〉〈34〉〈41〉

Different contours can give different residues R1, R2, . . . .
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Composite leading singularities
Two different ways how to store information about the cut:

Take the form F (z) → maximal cuts.
List of residues Ri → leading singularities.

This leading singularity diagram is an on-shell diagram which is not
reduced.

1

〈12〉〈23〉〈34〉〈41〉

Jaroslav Trnka Non-planar leading singularities in N=4 SYM 4/73



Composite leading singularities
Composite leading singularity is a list of rational functions = different
ways how to reduce the initial reducible on-shell graph. Let us take

3-loop 4pt example.

This represents a function with two integrations left
∫
dz1 dz2 F (z1, z2)

Chain of two reductions to get reduced graph (here again 4pt box).

The LS is a list of residues of all possible z1 and z2 contours.
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Colored graphs and on-shell diagrams
For the leading singularity it is often convenient to use colored
graphs when we glue together also higher n and k amplitudes but
they are equivalent to on-shell diagrams.

In the on-shell diagram these vertices are expanded into k = 1 and
k = 2 3pt amplitudes.
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Colored graphs and on-shell diagrams
In general case the colored graph can have vertices with k ≥ 3, then
one colored graph corresponds to sum of on-shell diagrams.

Example: 7pt NMHV

where the 6pt NMHV tree-level can be written using black and
white vertices via BCFW.

Colored graphs are equivalent to sums of on-shell diagrams.
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Leading singularities in planar case
Calculate leading singularities as algebraic functions.

Field theory: we glue tree-level amplitudes together evaluated at the
cut momenta.

New much more powerful ways using the Grassmannian (Nima’s talk):

Local: on-shell gluing and constructing the Grassmannian.

Global: using permutations - also tells us that there is finite number
of them.

Presence of poles that are not present in the amplitude,
e.g. 6pt NMHV leading singularity

1

[12][23]〈45〉〈56〉s123〈6|1 + 2|3]〈4|2 + 3|1]
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Leading singularities in planar case
MHV case is special

The only leading singularity is Parke-Taylor factor

1

〈12〉〈23〉〈34〉 . . . 〈n1〉

The leading singularity corresponds to the unique top form -
Freddy’s talk.

The integrand at any loop order can be written then as

M `−loop
n =

1

〈12〉〈23〉〈34〉 . . . 〈n1〉 · I
`−loop
n

where I`−loopn is dual conformal invariant and evaluates to 1
(or zero) on any T 4L contour.

This is no longer true for the non-planar case.
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Example of a leading singularity of non-planar amplitude
Let us extract the LS directly from the 5pt 2-loop non-planar amplitude:
Carrasco, Johannson, 2011
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FIG. 2: The six diagrams that appear in the five-point two-loop amplitudes.

respect to permutations of any four legs that connect to a box subgraph. This follows from

the kinematic Jacobi relations, since, triangles are obtained from the antisymmetrization of

any two legs in a box diagram. The absence of triangles is then equivalent to requiring total

symmetry of the box numerators. This explains why the numerator of diagram (B) in fig. 1

is totally symmetric in legs 3, 4 and 5. And, for two multiloop diagrams, which only differ

by the ordering of legs of a box subgraph, it follows that they have the same numerator. At

two loops this property implies the following constraints on the numerators:

N (a) = N (b), N (d) = N (e) = N (f) . (4.2)

This can easily be seen in fig. 2: diagram (a) and (b) only differ by the edge connections of the

rightmost one-loop subgraph, which is a box. Similarly, (d) differs from (e) by connections

in the rightmost one-loop subgraph, and (d) differs from (f) by connections in the leftmost

one-loop subgraph, both are boxes.

Further, the remaining undetermined numerators N (a), N (c) and N (d) are interlocked by

the two kinematic Jacobi relations,

N (c)(1, 2, 3, 4, 5; p, q) = N (a)(1, 2, 5, 4, 3; p, k3,4 − q)−N (a)(5, 4, 3, 1, 2; k5 + q, k1,2 − p) ,

N (d)(1, 2, 3, 4, 5; p, q) = N (a)(1, 2, 3, 4, 5; p, q)−N (a)(2, 1, 3, 4, 5; p, q) , (4.3)

20

TABLE I: The numerator factors of the integrals in fig. 2. The first column labels the integral, the

second column the numerator factor for N = 4 super-Yang-Mills theory. The squares of these, or

more accurately their double copies, are the numerator factors for N = 8 supergravity.

I(x) N = 4 Super-Yang-Mills (
√N = 8 supergravity) numerator

(a),(b) 1
4

(
γ12(2s45 − s12 + τ2p − τ1p) + γ23(s45 + 2s12 − τ2p + τ3p)

+ 2γ45(τ5p − τ4p) + γ13(s12 + s45 − τ1p + τ3p)
)

(c) 1
4

(
γ15(τ5p − τ1p) + γ25(s12 − τ2p + τ5p) + γ12(s34 + τ2p − τ1p + 2s15 + 2τ1q − 2τ2q)

+ γ45(τ4q − τ5q)− γ35(s34 − τ3q + τ5q) + γ34(s12 + τ3q − τ4q + 2s45 + 2τ4p − 2τ3p)
)

(d)-(f) γ12s45 − 1
4

(
2γ12 + γ13 − γ23

)
s12

where g is the coupling constant, and the sum is over all 120 permutations, S5, of the external

leg labels; the symmetry factors 1/2 and 1/4 compensate for the overcount in this sum. The

integrals are given by

I(x) =

∫
dDp

(2π)D
dDq

(2π)D
C(x)N (x)(1, 2, 3, 4, 5; p, q)

l21 l
2
2 l

2
3 l

2
4 l

2
5 l

2
6 l

2
7 l

2
8

, (4.14)

where the li are linear combinations of ki, p and q, according to the graph structure of each

diagram in fig. 2 [for diagrams (d), (e) and (f) one of the 1/l2i is an external propagator

1/s12]. The numerators N (x) are given in table I. The color factors are

C(a) = c(4,10,8)c(5,7,10)c(6,1,12)c(7,6,9)c(8,9,11)c(11,13,3)c(12,2,13) ,

C(b) = c(4,9,10)c(5,7,8)c(6,1,12)c(8,9,11)c(10,7,6)c(11,13,3)c(12,2,13) ,

C(c) = c(1,6,8)c(2,12,8)c(6,9,11)c(7,4,13)c(10,9,5)c(11,13,3)c(12,7,10) ,

C(d) = c(4,10,8)c(5,7,10)c(6,13,12)c(7,6,9)c(8,9,11)c(11,13,3)c(12,2,1) ,

C(e) = c(4,10,8)c(5,9,7)c(6,13,12)c(7,10,6)c(8,9,11)c(11,13,3)c(12,2,1) ,

C(f) = c(2,1,8)c(6,9,7)c(7,13,5)c(8,6,11)c(10,3,9)c(11,12,10)c(12,4,13) , (4.15)

where we use the notation c(i,j,k) ≡ f̃aiajak for the structure constants, and ai≤5 are the

external color labels.

The N = 8 supergravity amplitude is given by

M(2)
5 = −i

(κ
2

)7 ∑

S5

(1
2
I(a) +

1

4
I(b) +

1

4
I(c) +

1

2
I(d) +

1

4
I(e) +

1

4
I(f)

)
, (4.16)

24
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Example of a leading singularity of non-planar amplitude
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M(2)
5 = −i

(κ
2

)7 ∑

S5

(1
2
I(a) +

1

4
I(b) +

1

4
I(c) +

1

2
I(d) +

1

4
I(e) +

1

4
I(f)

)
, (4.16)

24

where τip = 2(ki · p) and γ12 = β12345 − β21345 with

β12345 =
[12][23][34][45][51]

〈12〉[23]〈35〉[51]− [12]〈23〉[35]〈51〉

No reason to expect that the leading singularities would be simple.
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Example of a leading singularity of non-planar amplitude
Let us calculate one leading singularity explicitly for integral (c):

=
〈13〉

〈12〉〈23〉〈34〉〈41〉〈15〉〈53〉

=
1

〈12〉〈23〉〈34〉〈45〉〈51〉 +
1

〈12〉〈23〉〈35〉〈54〉〈41〉

And the same for all other colorings. Very unexpected!
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All non-planar MHV leading singularities
What can we say from the obvious symmeties?

Superconformal symmetry fixes the LS to be holomorphic.

They can contain spurious poles.

There may be infinite number of them for fixed n (new LS for higher
loops) of any kind.

Main result

All non-planar MHV leading singularities can be written as linear
combinations of Parke-Taylor factors with different orderings. It is easy to
calculate all of them explicitly.
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Proof of main result
Step 0: Configuration of points and poles

From Nima’s talk: configuration of n points in P k−1 are equivalent to
the point in the Grassmannian G(k, n) and it is equivalent to the on-shell
diagram.

The poles correspond to imposing one more constraint on the geometric
configuration.
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Proof of main result
In planar case all the constraints are between consecutive points. What
to do in the non-planar case?

Any non-planar diagram can be planarized by cutting internal lines.

Any non-planar on-shell diagram can be obtained from the planar
diagram by identifications of pairs of external lines.

Gluing 7 and 6 we get a non-planar graph.
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Proof of main result
What is the gluing of external legs from the point of view of
configuration of points in P k−1?

We draw the line that connects the points we want to get rid of.

Choose an arbitrary point on this line and project all other points
through this point on an arbitrary P k−2 plane.

Jaroslav Trnka Non-planar leading singularities in N=4 SYM 16/73



Proof of main result
What is the gluing of external legs from the point of view of
configuration of points in P k−1?

We draw the line that connects the points we want to get rid of.

Choose an arbitrary point on this line and project all other points
through this point on an arbitrary P k−2 plane.

Jaroslav Trnka Non-planar leading singularities in N=4 SYM 17/73



Proof of main result
What is the gluing of external legs from the point of view of
configuration of points in P k−1?

We draw the line that connects the points we want to get rid of.

Choose an arbitrary point on this line and project all other points
through this point on an arbitrary P k−2 plane.

Jaroslav Trnka Non-planar leading singularities in N=4 SYM 18/73



Proof of main result
What is the gluing of external legs from the point of view of
configuration of points in P k−1?

We draw the line that connects the points we want to get rid of.

Choose an arbitrary point on this line and project all other points
through this point on an arbitrary P k−2 plane.

Jaroslav Trnka Non-planar leading singularities in N=4 SYM 19/73



Proof of main result
What is the gluing of external legs from the point of view of
configuration of points in P k−1?

We draw the line that connects the points we want to get rid of.

Choose an arbitrary point on this line and project all other points
through this point on an arbitrary P k−2 plane.

Jaroslav Trnka Non-planar leading singularities in N=4 SYM 20/73



Proof of main result
What is the gluing of external legs from the point of view of
configuration of points in P k−1?

We draw the line that connects the points we want to get rid of.

Choose an arbitrary point on this line and project all other points
through this point on an arbitrary P k−2 plane.

Jaroslav Trnka Non-planar leading singularities in N=4 SYM 21/73



Proof of main result
What is the gluing of external legs from the point of view of
configuration of points in P k−1?

We draw the line that connects the points we want to get rid of.

Choose an arbitrary point on this line and project all other points
through this point on an arbitrary P k−2 plane.

Jaroslav Trnka Non-planar leading singularities in N=4 SYM 22/73



Proof of main result
The corresponding on-shell diagram is:
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Proof of main result
We start with a d+ r dimensional configuration of points in
G(n+ 2r, k + r)

After r gluing we land on a d dimensional configuration in G(n, k).

It is not in the positive part of Grassmannian anymore, so the linear
dependencies are not just between consecutive points.

This is true for any on-shell diagram/configuration of points. For a
special case of MHV leading singularities, k = 2 and d = 2n− 4.

The leading singularity is a top cell of G(2, n) so the configuration is
always n generic points in P 1 (with no ordering).

Question: can we learn about the pole structure of a given leading
singularity?
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Proof of main result
For MHV the minors of Grassmannian (i j) = 〈i j〉. To probe a pole we
need to set (i j) = 0 which means that points i and j sit on top of each
other.

In the planar case, we know the boundary operator - forces two points to
sit on top of each other.

For the non-planar case, we do not know the boundary operator. There
can be also other boundaries where e.g. (12)(34)(56) = (14)(25)(36)
which would produce a pole (〈12〉〈34〉〈56〉 − 〈14〉〈25〉〈36〉) in the
denominator.
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Proof of main result
Step 1: Absence of spurious poles

We want to prove that the only poles in the algebraic expressions for the
MHV leading singularities are 〈i j〉. It means that the boundary operator
produces only doubled points. The boundary operator is defined
implicitly:

Cut the lines of the on-shell diagram and planarize it.

Calculate the boundary (erase the edge in the diagram or use the
boundary operator in the configuration of points).

Glue again all the lines you cut before.

If the resulting configuration has (at least) one double point, then the
only poles are 〈i j〉.
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Proof of main result
But we will prove even stronger statement.

Theorem
For a cell in G(k, n) without zeros of dimension d, the number of distinct
points is less than or equal to d− n+ 2k.

We use the equivalence between cells in G(k, n) and on-shell diagrams.
For the configuration without any repeated points following relations are
true:

F − E + V = 1 Euler’s formula

d = F − 1 dimension formula

V = B +W vertices are black or white

B −W = k − (n− k), 3V + n = 2E, E ≤ 3B +W

Here F is number of faces, E edges, V vertices, B black vertices, W
white vertices. This gives us n ≤ d− n+ 2k.
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Proof of main result
If we remove the repeated point, then d decreases by 1, n decreases by 1
and k is unchanged. Therefore, we get

P ≤ d− n+ 2k

where P is number of distinct points which completes a proof.

The number of double points for our case (k = 2, d = 2n− 5) is then

∆ = n− P ≥ 2n− 2k − d = 1

The only boundaries are with at least one double point → only poles 〈ij〉.
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Proof of main result
Step 2: No double poles
The dlog form of the Grassmannian measure (nothing to do with
planarity) ∫

dx1
x1

dx2
x2

dx3
x3

. . .
dxn
xn

δ(· · · )
obvious that the leading singularities do not have any double poles.
also we do not get any double poles if we take residues on xj → 0
which corresponds to setting 〈i j〉 → 0. A very non-trivial property!
E.g. it is true for Parke-Taylor factor

lim
〈56〉→0

1

〈12〉〈23〉〈34〉〈45〉〈56〉〈61〉 =
1

〈56〉 ·
1

〈12〉〈23〉〈34〉〈45〉〈51〉
but for another simple function

lim
〈56〉→0

1

〈12〉〈23〉〈31〉〈45〉〈56〉〈64〉 =
1

〈56〉 ·
1

〈12〉〈23〉〈34〉〈45〉2〈64〉
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Proof of main result
Let us take a more complicated example

=
(〈15〉〈26〉〈34〉 − 〈14〉〈25〉〈36〉)2

〈12〉〈13〉〈14〉〈15〉〈23〉〈25〉〈26〉〈34〉〈36〉〈45〉〈46〉〈56〉

Calculate the limit 〈56〉 → 0 and then 〈23〉 → 0,

→ 1

〈56〉 ·
〈13〉

〈12〉〈13〉〈14〉〈15〉〈23〉〈34〉〈35〉 →
1

〈56〉 ·
1

〈23〉 ·
1

〈14〉〈43〉〈35〉〈51〉
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Proof of main result
Step 3: Inverse soft factor terms
We can easily prove that inverse soft factor acting on Parke-Taylor factor
produces a particular sum of Parke-Taylor factors with different orderings.

=
〈41〉
〈45〉〈51〉 ·

1

〈12〉〈23〉〈34〉〈41〉

= PT (12453) + PT (12435)

The general formula is simple and straightforward:

〈i j〉
〈i n〉〈n j〉 · PT (123 . . . n− 1) =

j−1∑

k=i

PT (123 . . . k n k + 1 . . . n− 1)
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Proof of main result
Step 4: Recursive construction

Knowing that the leading singularities are holomorphic functions with
〈ab〉 only and no double poles (even for any chain of residues), we can
prove our conjecture. Suppose that we have the result for leading

singularity A,
Pick two indices, say 1 and j and do the shift λ̂1 = λ1 + zλj .
Use the Cauchy theorem to write

A =
∑

(ResA)〈1̂ r〉=0 =
∑ 〈1 j〉
〈1 r〉〈r j〉 ·

(
new function
with no λr

)

We can continue until the function that is left is Parke-Taylor factor

A =
∑

S · S . . . S · PT (. . . ).

If we want, we can go down to the 3pt amplitude.
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Proof of main result
We already know that

S · PT =
∑

i

PTi

Therefore, for any leading singularity

A =
∑

i

PTi

And our conjecture is proven.
Q.E.D.

Jaroslav Trnka Non-planar leading singularities in N=4 SYM 36/73



Calculating all leading singularities
If the leading singularity an is inverse soft-factor applied to lower point
one, we can strip off the factor S(i,j)

k where we add particle k between i
and j.

Reminder of an example, we have already worked out

= S
(1,4)
5 ×

=
〈41〉
〈45〉〈51〉 ·

1

〈12〉〈23〉〈34〉〈41〉 = PT (12453) + PT (12435)
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Calculating all leading singularities

The 6pt leading singularity is not
an inverse soft factor anymore.

= S
(1,3)
7 ·
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Calculating all leading singularities
Step 4: BCFW bridge

Invese soft factor terms are special cases, in general we have to use the
BCFW construction.

Attach the bridge to the graph:

Remove one edge at a time. Removable edges are those when the
resulting configuration is non-singular, these represent the terms in
Cauchy’s formula.
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Calculating all leading singularities
There are four diagrams that do contribute

They are guaranteed to be S · (lower point diagram) as we showed before.
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Calculating all leading singularities
If we iterate this procedure, we find that the result can be written as a
sum of six terms,

S
(2,3)
1 · S(2,3)

6 · PT (2345) + S
(2,3)
1 · S(2,4)

6 · PT (2534) + S
(2,5)
1 · S(2,5)

6 · PT (2345)

+S
(2,5)
1 · S(2,4)

6 · PT (2354) + S
(3,5)
6 · S(2,4)

1 · PT (2354) + S
(2,4)
1 · S(3,4)

6 · PT (2345)

which can be written as a sum of six Parke-Taylor factors

PT (126435)+PT (123564)+PT (123456)+PT (125463)+PT (126453)+PT (125364)

which surprisingly shrinks to

(〈15〉〈26〉〈34〉−〈14〉〈25〉〈36〉)2
〈12〉〈13〉〈14〉〈15〉〈23〉〈25〉〈26〉〈34〉〈36〉〈45〉〈46〉〈56〉
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Calculating all leading singularities
Faster BCFW bridge:

From the diagram we can determine what are all possible poles in
the denominator.
In our case these are 〈12〉, 〈13〉, 〈14〉, 〈15〉.
Erase an edge that leads to the given pole (line 1 and j would be
connected to white vertex) and then attach BCFW bridge to 1 and
any other fixed line.
This provides us directly the terms of the form S · (n 1pt diagram).

for pole 〈13〉
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Reduction
The BCFW construction can be used for all reduced diagrams.

In general, we do not know how to reduce a graph for general k.
Mathematicians also do not know how to do it in the non-planar case.

However, we have the physical insight: the only poles of MHV leading
singularities are 〈ab〉 and there are no double poles.

If the diagram is reduced,
Removing an edge corresponds to xj → 0 which means 〈ab〉 → 0.
The resulting diagram must have two external lines attached to a
white vertex. This corresponds to λi ∼ λj which is equivalent to
〈i j〉 = 0.
Not all edges can be removed from the graph. For non-removable
edges we get even more external lines attached to the white vertex
(or more pairs to more vertices).
We have to check all removable edges.
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Reduction
We can show that these graphs are reduced:

But e.g. other even simpler graph:

remove edge (12)

is not reduced. If the graph is not reduced, we have to reduce it.
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Reduction
How does the reduction work?

Remove the edge, and list all the diagrams where none of white vertices
has two external legs attach to it.

we get a list
of

These diagrams are already reduced, and as a result we get:
{PT (1234), PT (1423)}. These are two different composite LS of this
diagram.
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General method
We can evaluate arbitrary MHV on-shell diagram (leading singularity):

We check the reducibility. If the diagram is not reduced, reduce it.

Once we have the reduced diagrams only (one or a list), we use
BCFW to calculate them.

The result is a sum of Parke-Taylor factors.
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Evidence for new structure
Computational evidence that the leading singularities are even simpler.

We do not get arbitrary linear combinations of Parke-Taylor factors, but
the special ones that form compact expressions:

(〈15〉〈26〉〈34〉 − 〈14〉〈25〉〈36〉)2
〈12〉〈13〉〈14〉〈15〉〈23〉〈25〉〈26〉〈34〉〈36〉〈45〉〈46〉〈56〉
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Evidence for new structure

(〈16〉〈27〉〈38〉〈45〉 − 〈15〉〈26〉〈37〉〈48〉)2
〈12〉〈14〉〈15〉〈16〉〈23〉〈26〉〈27〉〈34〉〈37〉〈38〉〈45〉〈48〉〈56〉〈58〉〈67〉〈78〉

Jaroslav Trnka Non-planar leading singularities in N=4 SYM 48/73



Evidence for new structure

(〈16〉〈23〉〈47〉〈57〉 − 〈14〉〈25〉〈37〉〈67〉)2
〈12〉〈14〉〈16〉〈17〉〈23〉〈25〉〈27〉〈34〉〈35〉〈37〉〈46〉〈47〉〈56〉〈57〉〈67〉
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Evidence for new structure
The compact expressions seem to be fundamental.

The expansion in terms of Parke-Taylor factors looks like some
”triangulation”.

An idea: the result can be read from the diagram directly without any
calculation. We do not know if it is true but there is an interesting
evidence that it is not completely crazy:

(〈15〉〈26〉〈34〉 − 〈14〉〈25〉〈36〉)2

〈12〉〈13〉〈14〉〈15〉〈23〉〈25〉〈26〉〈34〉〈36〉〈45〉〈46〉〈56〉
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Evidence for new structure
The compact expressions seem to be fundamental.

The expansion in terms of Parke-Taylor factors looks like some
”triangulation”.

An idea: the result can be read from the diagram directly without any
calculation. We do not know if it is true but there is one interesting
evidence that it is not completely crazy:

(〈15〉〈26〉〈34〉 − 〈14〉〈25〉〈36〉)2

〈12〉〈13〉〈14〉〈15〉〈23〉〈25〉〈26〉〈34〉〈36〉〈45〉〈46〉〈56〉

=
1

2

∑
all closed paths

PT (i1, i2, i3, i4, i5, i6)
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Beyond MHV
There are definitely new objects we get even for NMHV.

Example of gluing legs from 8pt N2MHV to 6pt NMHV,
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Beyond MHV
For the projection of points from P 3 to P 2,
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Beyond MHV
For the projection of points from P 3 to P 2,
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From leading singularities to amplitudes
How can we use the knowledge of leading singularities to construct the
MHV non-planar amplitudes?

Natural idea: recursion relations (as in planar case).

Obvious problems with uniqueness of the integrand, etc. → we do not
have recursion relations now.

The other natural proposal is to write the amplitude in a form

M =
∑

i

(LS)i · Ii

This work is in progress now . . . but there is some interesting aspect
even for 4pt 2-loop case.
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From leading singularities to amplitudes
Work by Bern,Rozowsky,Yan (1997),Bern,Dixon,Dunbar,Perelstein,Rozowsky (1998):
The complete 2-loop 4pt amplitude is

A
(2)
4 ∼ K

∑

S4

[
C

(P )
1234I

(P )
1234 + C

(NP )
1234 I

(NP )
1234

]

where C1234 is a color factor and

K =
[12][34]

〈12〉〈34〉δ
(8)(λ · η)

The non-planar diagram is

I
(NP )
1234 = s12 ·

2

3

1

4
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From leading singularities to amplitudes
This integral was calculated by Tausk in 1999 and the result does not
have uniform transcendentality despite the final result does!

Let us look at the leading singularities of this integral.

2

3

1

4

Let us calculate the quadrupole cut of the box part. It gives the Jacobian
J = (p− k1 − k3)2(p+ k2 + k3)

2,

1

(p− k1)2p2(p+ k2)2 · (p− k1 − k3)2(p+ k2 + k3)2
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From leading singularities to amplitudes
The remaining p-integral has four quadrupole cuts (one is vanishing).
Two of them just correspond to the leading singularity

but the other two (when we cut both (p− k1 − k3)2, (p+ k2 + k3)
2) not.

Why? After we cut (p− k1 − k2)2, (p+ k2 + k3)
2 and p2 we generate a

double-pole and the numerator does not kill it because it is just scalar
function N = (k1 + k2)

2.
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From leading singularities to amplitudes
Cutting both factors in Jacobian corresponds to setting both s = t = 0 in
4pt SYM amplitude, but SYM does not have this singularity, it is
1/s+ 1/t.

We should find the numerator that prevents us from having this cut,

N =
[
(p− k1 − k2)2 + (p+ k2 + k3)

2
]

How is it related to the original numerator N = (k1 + k2)
2?

[
(p− k1 − k2)2 + (p+ k2 + k3)

2
]

= (k1 + k2)
2 + (p− k1)2 + (p+ k2)

2
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From leading singularities to amplitudes
The integrals are then related via:

[
(p− k1 − k2)

2 + (p+ k2 + k3)
2
]
·

2

3

1

4

= (k1 + k2)
2 ·

2

3

1

4 + +

Fortunately, the 6-propagator integral was also calculated by Tausk, and
it has just transcendentality 3.

Note: it does not have any leading singularities.
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From leading singularities to amplitudes
Combining the pieces calculated by Tausk we find that our integral

[
(p− k1 − k2)

2 + (p+ k2 + k3)
2
]
·

2

3

1

4

has uniform transcendentality!

It supports the idea that the leading singularities are related to uniform
transcendentality.

But the former integral gave a correct answer for the amplitude (after
the color sum is performed). Do we still get the right answer with this
integral?
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From leading singularities to amplitudes
We need to evaluate a sum:

∑

S4

C
(NP )
1234 × +

Note that each integral is a function F (s, t, u) which is completely
symmetric in s, t, u. It is obvious if you write s = (k1 + k2)

2,
t = (k1 + k3)

2, u = (k1 + k4)
2. Then we can factor out this function and

get

2F (s, t, u)
∑

S4

C
(NP )
1234 = 0

and the answers are identical. Same for 4pt 2-loop gravity amplitude
where we use momentum conservation instead of color identity.
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Outlook
All non-planar MHV leading singularities are linear combinations of
Parke-Taylor factors.

The explicit formula suggest that there are some further constraints
that simplify the result.

Beyond MHV we definitely get new objects and it would interesting
to classify them and calculate.

From leading singularities to amplitudes: find the integrals that
make the leading singularities manifest.

THANK YOU!
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