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Amplitudes versus correlation functions

✔ Carry different/supplementary information about gauge theory:

Gn = 〈O(x1) . . .O(xn)〉 = off-shell (anomalous dimensions, structure constants of OPE)

An = 〈p1, . . . , pn|S |0〉 = on-shell (S-matrix)

✔ Amplitudes are not well-defined in D = 4 dimensions

✗ Suffer from IR divergences and require a regularization

✗ Part of symmetries (conformal + dual conformal) are broken by IR regulator

✔ Correlation functions of half-BPS operators are well-defined in D = 4 dimensions

✗ Do not require a regularization for generic positions of operators

✗ Inherits all (unbroken) symmetries of N = 4 SYM

✔ They are related to each other in planar N = 4 SYM:

lim
x2
i,i+1→0

lnGn(xi) ∼ 2 lnAn(pi) , pi = xi − xi+1

This talk:

Correlation functions have a new hidden symmetry in N = 4 SYM (no need for planar limit!)

Allows us to predict correlators/amplitudes at higher loops without any Feynman graph calculations!
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Gluon amplitudes

✔ Four-gluon amplitude in N = 4 SYM at weak coupling a = g2Nc/(8π2)

A4/A
(tree)
4 = 1 + a stI(1)(s, t) +O(a2)

Scalar box in the dimensional regularization (for IR divergences) with D = 4− 2ǫ

I(1)(s, t) =

p1

p2 p3

p4
x1

x2

x3

x4x5
∼

∫

dDx5

x2
15x

2
25x

2
35x

2
45

, (x2
12 = x2

23 = x2
34 = x2

41 = 0)

Dual variables pi = xi − xi+1 with p2i = x2
i,i+1 = 0

✔ (Broken) dual conformal symmetry

✔ All-loop BDS ansatz / AdS prediction / Wilson loop duality

✔ Explicit expressions for loop integrands up to 7 loops [Bourjaily,DiRe,Shaikh,Spradlin,Volovich’12]

✔ Seemingly increasing complexity of diagrams at higher loops

1

2 3

4

h(1,3;2,4) T (1,3;2,4) 4-loops 5-loops
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Correlation functions

✔ Protected superconformal operators made from six real scalars ΦI

O(x) = Tr(ZZ) , Õ(x) = Tr(Z̄Z̄) , Z = Φ1 + iΦ2

✗ All-loop scaling dimension = tree level dimension

✗ Two- and three-point correlation functions do not receive quantum corrections

✔ Simplest correlation function

G4 = 〈O(x1)Õ(x2)O(x3)Õ(x4)〉 = G
(0)
4

[

1 + 2a x2
13x

2
24g(1, 2, 3, 4) +O(a2)

]

One-loop ‘cross’ integral

g(1, 2, 3, 4) =
1

4π2

∫

d4x5

x2
15x

2
25x

2
35x

2
45

, (x2
12, x

2
23, x

2
34, x

2
41 6= 0)

✔ Loop corrections to the amplitude and to the correlator involve the same integral g(1, 2, 3, 4) but

for different kinematics: on-shell x2
i,i+1 = 0 for A4 and off-shell x2

i,i+1 6= 0 for G4

✔ Amplitude/correlation function duality

lim
x2
i,i+1→0

ln
(

G4/G
(0)
4

)

= ln
(

A4/A
(tree)
4

)

Understood at the level of integrands in planar N = 4 SYM
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A hidden symmetry

Examine one-loop correction to the correlator

G
(1)
4 ∼

∫

d4x5

x2
15x

2
25x

2
35x

2
45

=
31

2

4

5

The corresponding integrand

[G
(1)
4 ]Integrand ∼

1

x2
15x

2
25x

2
35x

2
45

The r.h.s. has S4 permutation symmetry w.r.t. exchange of the external points 1, 2, 3, 4

Equivalent form of writing

[G
(1)
4 ]Integrand ∼ x2

12x
2
13x

2
14x

2
23x

2
24x

2
34 ×





∏

i<j

1

x2
ij





= x2
12x

2
13x

2
14x

2
23x

2
24x

2
34 ×













42

5

3

1













The second factor in the r.h.s. has the complete S5 permutation symmetry!
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Two loops

✔ Explicit two-loop calculation: [Eden,Schubert,Sokatchev’00],[Bianchi,Kovacs,Rossi,Stanev’00]

G(2) = h(1, 2; 3, 4) + h(3, 4; 1, 2) + h(2, 3; 1, 4) + h(1, 4; 2, 3)

+ h(1, 3; 2, 4) + h(2, 4; 1, 3) +
1

2

(

x2
12x

2
34 + x2

13x
2
24 + x2

14x
2
23

)

[g(1, 2, 3, 4)]2

h(1, 2; 3, 4)− ‘double’ scalar box integral

✔ Go to a common denominator

G
(2)
4 = x2

12x
2
13x

2
14x

2
23x

2
24x

2
34

∫

d4x5d
4x6 f

(2)(x1, . . . , x6)

✔ 7 integrals in G
(2)
4 are described by a single f−function

f(2)(x1, . . . , x6) =
1

48

∑

σ∈S6

x2
σ1σ2

x2
σ3σ4

x2
σ5σ6

∏

1≤i<j≤6 x
2
ij

=

σ1

σ2

σ3

σ4
σ5

σ6

Has the complete S6 permutation symmetry !

✔ Integrand of the correlator has the complete permutation symmetry exchanging the external and
integration points (no need for the planar limit !) ... Where does it come from?
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N = 4 stress-tensor supermultiplet

G4 = 〈O(x1, y1) . . .O(x4, y4)〉 =
∞
∑

l=0

al G
(ℓ)
4 (1, 2, 3, 4)

Half-BPS operators made of the six scalars (complex null vector, y2 ≡ yIyI = 0)

O(x, y) = yI yJ OIJ
20′ (x) = yI yJ tr

[

ΦIΦJ (x)
]

The lowest-weight state of the N = 4 stress-tensor (chiral) supermultiplet

T (x, ρ, y) = exp (ρaα Qα
a )O(x, y) = O(x, y) + . . .+ (ρ)4LN=4(x)

The on-shell action of the N = 4 theory

SN=4 =

∫

d4x

∫

d4ρ T (x, ρ, y)

Compute loop corrections using the method of Lagrangian insertions:

a
∂

∂a
G4 = a

∂

∂a

∫

DΦe−
1
a
SN=4[Φ] O(x1, y1) . . .O(x4, y4)

=

∫

d4x5 〈O(x1, y1) . . .O(x4, y4)LN=4(x5)〉

The loop correction is determined by integrated 5-point correlation function with insertions of the
N = 4 SYM action
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Method of Lagrangian insertions

The ℓ−loop correction – (integrated) tree-level correlation function with ℓ insertions of LN=4

G
(ℓ)
4 (1, 2, 3, 4) =

∫

d4x5 . . .

∫

d4x4+ℓ 〈O(x1, y1) . . .O(x4, y4)L(x5) . . .L(x4+ℓ)〉
(0)

The operators O(x, y) and L(x) into the same supermultiplet!

G
(ℓ)
4 (1, 2, 3, 4) =

∫

d4x5...d
4x4+ℓ

(∫

d4ρ5 . . . d
4ρ4+ℓ 〈T (1)...T (1)T (5)...T (4 + ℓ)〉(0)

)

The integrand of the loop corrections to the four-point correlation function

[

G
(ℓ)
4 (1, 2, 3, 4)

]

Integrand
=

∫

d4ρ5 . . . d
4ρ4+ℓ 〈T (1)...T (1)T (5)...T (4 + ℓ)〉(0)

The correlation function 〈T (1)...T (1)T (5)...T (4 + ℓ)〉 is symmetric under exchange of points:

✔ Integrand reveals a new permutation S4+ℓ symmetry involving all the (4 + ℓ) points

✔ The OPE leads to powerful restrictions on the form of the integrand of the correlation function

✔ This information is sufficient to unambiguously fix the form of the integrand to all loops
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All-loop integrand

Loop corrections to 4-point correlator

G
(ℓ)
4 (1, 2, 3, 4) = x2

12x
2
13x

2
14x

2
23x

2
24x

2
34

∫

d4x5 . . . d
4x4+ℓ f

(ℓ)(x1, . . . , x4+ℓ)

✔ General form of f(ℓ) for arbitrary ℓ:

f(ℓ)(x1 . . . , x4+ℓ) =
P (ℓ)(x1, . . . x4+ℓ)
∏

1≤i<j≤4+ℓ x
2
ij

Can be deduced from the OPE analysis of the tree-level correlator

✔ The polynomial P (ℓ) should satisfy the conditions:

✗ be invariant under S4+ℓ permutations of x1, ..., x4+ℓ

✗ have a uniform conformal weight (1− ℓ) at each point, both external and internal

P (ℓ)(x−1
i ) =

4+ℓ
∏

i=1

(x2
i )

−ℓ+1P (ℓ)(xi)

✔ Graph theory solution:

P (ℓ) 7→ Multi-graph with (4 + ℓ) vertices of degree (ℓ− 1)
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Properties of the P−graphs

P (ℓ) = loop-less multigraph with (4 + ℓ) vertices (ℓ− 1) edges attached to each vertex

P (1) P (2) P
(3)
1 P

(3)
2 P

(3)
3 P

(3)
4

Can be easily generated at each loop level ℓ using standard graph-theoretical tools
The number of isomorphism classes (nℓ) of the P−graphs up to six loops

ℓ 1 2 3 4 5 6

nℓ 1 1 4 32 930 189341

nplanar
ℓ

1 1 1 3 7 36

nrung−rule
ℓ

- 1 1 2 6 23

nnon−rung−rule
ℓ

- 0 0 1 1 13

The vast majority of graphs produce non-planar corrections
Planar topologies (nplanar

ℓ
) have an interesting iterative structure, the “rung rule"

The majority of the planar graphs (nrung−rule
ℓ

) can be obtained from lower loops

Only a smal number of non-rung-rule planar graphs (nnon−rung−rule
ℓ

) require a different approach.
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From P−graphs to integrand

The general form of the integrand

f(ℓ)(x) =

nℓ
∑

α=1

c
(ℓ)
α

P
(ℓ)
α (x1, . . . , x4+ℓ)
∏

1≤i<j≤4+ℓ x
2
ij

=

nℓ
∑

α=1

c
(ℓ)
α f

(ℓ)
α (x1, . . . , x4+ℓ)

c
(ℓ)
α −arbitrary (rational) coefficients

f
(ℓ)
α 7→ connected graph with (4 + ℓ) vertices of degree ≥ 4

f(1) f(2) f
(3)
1 f

(3)
2 f

(3)
3

f
(3)
4

Large Nc scaling of the coefficients c
(ℓ)
α is determined by the genus of f−graphs

c
[

f
(3)
2

]

= O(1/N0
c ) , c

[

f
(3)
1

]

, c
[

f
(3)
3

]

, c[f
(3)
4

]

= O(1/N2
c )

Planar f−graphs have an iterative structure
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Rung rule

f(ℓ) = Glue f(1) (a square pyramid) to any planar f(ℓ−1)− loop graph across rectangle face

From amplitude/correlation function duality, in the light-cone limit

lim
x2
i,i+1→0



1 + 2
∑

ℓ≥1

aℓF (ℓ)(xi)



 =



1 +
∑

ℓ≥1

aℓM(ℓ)(pi)





2

this is precisely the “rung rule” for the planar four-particle amplitude M(ℓ)

The rule also fixes the coefficients of the new “rung-rule” topologies

Starting from 4 loops there are non-rung-rule topologies
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OPE constraints

✔ Correlation function in the like-cone limit x2
12, x

2
23, x

2
34, x

2
41 → 0

lnG4(1, 2, 3, 4) ∼ Γcusp(a) lnu ln v +O(a lnu, a ln v) , u , v → 0

Conformal cross-ratios u =
x2
12x

2
34

x2
13x

2
24

, v =
x2
23x

2
41

x2
13x

2
24

✔ Examine two-loop integrand

lnG4 ∼ aG
(1)
4 + a2

[

G
(2)
4 −

1

2
(G

(1)
4 )2

]

= a
x2
13x

2
24

x2
15x

2
25x

2
35x

2
45

+ a2
x2
13x

2
24[x

2
13(x

2
25x

2
46 + x2

45x
2
26) + x2

24(x
2
36x

2
15 + x2

16x
2
35)− x2

13x
2
24x

2
56]

2x2
15x

2
25x

2
35x

2
45x

2
16x

2
26x

2
36x

2
46x

2
56

Divergences come from integration over x5 and x6 approaching the light-like edges, e.g.
x5 → x1 − αx12

x2
5i → αx2

1i + (1− α)x2
2i , 0 ≤ α ≤ 1

✔ For the integral to have at most double-log asymptotics ∼ lnu ln v the polynomial in the
numerator should vanish in this limit

✔ This condition alone fixes all the coefficients c
(ℓ)
i . Checked to 2-, 3-, 4-, 5- and 6-loops.

Permutation symmetry + OPE constraints allow us to construct the integrand of G4 up to 6 loops!
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4 loops

F (4)(x1, x2, x3, x4) =
x2
12x

2
13x

2
14x

2
23x

2
24x

2
34

4! (−4π2)4

∫

d4x5d
4x6d

4x7d
4x8 f

(4)(x1, . . . , x8) ,

There are in total 32 f−graphs: 3 planar and 29 of genus 1

f(4) =
32
∑

α=1

c
(4)
α f

(4)
α (x1, . . . , x8) = f

(4)
g=0(xi) +

1

N2
c

f
(4)
g=1(xi) .

Planar four-loop f−graphs

f
(4)
1 f

(4)
2 f

(4)
3

The only non-rung-rule graph f
(4)
3

Correct asymptotics of the planar correlator in the light-cone limit

c
(4)
1 = c

(4)
2 = 1 , c

(4)
3 = −1
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4 loops, nonplanar sector

lnG4 = ln

(

Gg=0 +
1

N2
c

Gg=1 + . . .

)

= lnGg=0 +
1

N2
c

Gg=1

Gg=0
+ . . .

Nonplanar correction starts at 4 loops

Gg=1 ∼ a4F
(4)
g=1(xi) = sum of all 32 f−graphs

A new feature: 3 conformal Gram determinants

32
∑

i=1

(ak)if
(4)
i (x1, . . . , x8) = 0 , a1,2,3 – lists of 32 coefficients

Correct asymptotics on the light cone leads to

F
(4)
g=1(xi) = c

(4)
1 Q1(xi) + c

(4)
2 Q2(xi) + c

(4)
3 Q3(xi) + c

(4)
4 Q4(xi) ,

Qk – ‘special’ linear combinations of 32 integrals; c(4)
k

are arbitrary rational coefficients

Remarkable simplification in the short-distance limit x1 → x2 and x3 → x4

lim
x1→x2
x3→x4

Q1,2,3,4 =

∫

d4x5 . . . d4x8 x8
13

(x2
15x

2
35) . . . (x

2
18x

2
38)

(

x2
56x

2
78 + x2

57x
2
68 + x2

58x
2
67

)

x2
56x

2
57x

2
58x

2
67x

2
68x

2
78

Can be evaluated analytically (see Volodya’s talk)
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5 loops

F (5)(xi) = F
(5)
g=0 +

1

N2
c

F
(5)
g=1 +

1

N4
c

F
(5)
g=2 ,

Among 930 five-loop f−graphs only 7 are planar

f
(5)
1

f
(5)
2 f

(5)
3 f

(5)
4

f
(5)
5

f
(5)
6 f

(5)
7

f
(5)
7 is the only non-rung-rule five-loop graph

Asymptotic behavior of the correlation in the light-cone limit leads to

−c
(5)
1 = c

(5)
2 = c

(5)
3 = c

(5)
4 = −c

(5)
5 = c

(5)
6 = c

(5)
7 = 1

The first six coefficients are in agreement with the rung rule c
(5)
i = c

(4)
i
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6 loops

At six loops there are 189341 different f−graphs, but only 36 are planar

23 planar graphs are rung-rule induced, the remaining 13 non-rung-rule graphs are

f
(6)
24 f

(6)
25 f

(6)
26 f

(6)
27 f

(6)
28

f
(6)
29

f
(6)
30 f

(6)
31 f

(6)
32 f

(6)
33

f
(6)
34

f
(6)
35 f

(6)
36

In fact, only f
(6)
28 , f(6)

29 and f
(6)
31 contribute

c
(6)
28 = c

(6)
31 = 1 , c

(6)
29 = 2 , c

(6)
24 = c

(6)
25 = c

(6)
26 = c

(6)
27 = c

(6)
30 = c

(6)
32 = c

(6)
33 = c

(6)
34 = c

(6)
35 = c

(6)
36 = 0
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Back to the amplitudes: 4-loop 4-gluons

Amplitude/correlator duality

M
(4)
4 = lim

x2
i,i+1→0

[

1

2
G

(4)
4 −

1

4
G

(3)
4 G

(1)
4 −

1

8
(G

(2)
4 )2 +

3

16
G

(2)
4 (G

(1)
4 )2 −

5

128
(G

(1)
4 )4

]

All pseudo-conformal integrals that contribute to four-loop four-point amplitude

11

(d)

9

8

10 2
1 3

7

6
5

4
13

12

11
3)

2
l + l 1(

14

2s

(e)

9

8

10

1

12

7
6

5s
)2

13
15

2
3 4

13
11

14

3)
2

l + l 1
9

3

7
6 8

11

10

5

1 12

13

2 4s
14

8)
2

l + l (
4)

2
l + l 2(

15

(f)

s 3

2 3

41

1
2 7

3

6

4
5

10

8
9

13

11
129

(b)

10)
4

l + l 8(t 1
2

3
7

6
5

4

10
9

8

12
13 14

(c)

2s 3)
2

l + l 1(
11

12

14

13

8

10

9 2
1 3

7

6
5

4

12
(l  + lx x

(

6

9

8

12

11

s

1

2 3

4

2

46
5

7
31 9

10

s t
1 12

42
3

11
5

6 8
7

(d2 ) (f2 )

Perfect agreement with the known 4-loop result [Bern,Czakon,Dixon,Kosower,Smirnov’06]

M
(4)
4 = I(a)(s, t) + I(a)(t, s) + 2I(b)(s, t) + 2I(b)(t, s) + 2I(c)(s, t) + 2I(c)(t, s) + I

(d)
4 (s, t)

+ I(d)(t, s) + 4I(e)(s, t) + 4I(e)(t, s) + 2I(f)(s, t) + 2I(f)(t, s)− 2I(d2)(s, t)− 2I(d2)(t, s)− I(f2)(s, t)

All 15 relative signs/coefficients follow from c
(4)
1 = c

(4)
2 = −c

(4)
3 = 1 !

Agreement between correlators and amplitudes verified up to 6 loops
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Conclusions

✔ The all-loop integrand of 4-point correlator possesses a complete symmetry under the exchange
of the four external and all internal (integration) points

✔ This symmetry alone + OPE constraints allow us to construct 6-loop integrand of the correlation
function in the planar limit (without doing Feynman diagram calculation!)

✔ In the light-cone limit, the scattering amplitude/correlator duality predicts the integrand for
4-gluon amplitude

✔ In the short-distance limit, the OPE leads to analytical result for the Konishi anomalous
dimension at 5 loops [Volodya’s talk]
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For more information, see http://www.ihes.fr/~vanhove/QFT2012/

http://www.ihes.fr/~vanhove/QFT2012/
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