TA5-WP4: Scaling Workflows

Deep Learning for real-time classification of astronomical radio signals

Andrei Kazantsev, Ramesh Karuppusamy, Yunpeng Men, Rishi Kumar, Michael Kramer Max Planck Institute for Radio Astronomy Bonn, Germany

Max-Planck-Institut für Radioastronomie August 14, 2024

The main concept of the real-time classification

The main concept of the real-time classification

ML-PPA v.0.1

https://gitlab-p4n.aip.de/punch_public/ml-ppa

Limits of "spectrogram" approach

Spectrogram vs. DM-images

TransientX by Yunpeng Men

https://github.com/ypmen/TransientX

DM-time dataset

297 472 DM-time image in total. A big portion of this data (**80%**, **237 977**) has been used for training sessions, The rest of the data (**20%**, **59 495**) has been saved as an unseen dataset to calculate key metrics after training.

Results for test with real data

Results for test with real data

Model name	%	Model did not find	Model found additionally	Unique for the model
256_2	93.5	22	210 / 110	25
128_2	94.4	19	212 / 90	14
64_2	94.4	19	274 / 99	11
32_2	75.2	87	164 / 33	1
256_3	94.6	18	125 / 85	11
128_3	94.6	18	97 / 66	5
64_3	94.4	19	150 / 68	4
32_3	85.6	50	477 / 58	7

Totally synthetic filterbank file

Results of search in fake filterbank

12

Inference time vs. Real-time

Inference time vs. Real-time

dT vs CPU for different GPU, RES, and L values (Histogram)

Our models are minimalistic

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 252, 252, 4)	104
max_pooling2d (MaxPooling2D)	(None, 126, 126, 4)	0
conv2d_1 (Conv2D)	(None, 122, 122, 8)	808
max_pooling2d_1 (MaxPooling2D)	(None, 61, 61, 8)	0
conv2d_2 (Conv2D)	(None, 57, 57, 12)	2412
flatten (Flatten)	(None, 38988)	0
dense (Dense)	(None, 256)	9,981,184
dense_1 (Dense)	(None, 2)	514
Total params:		9,985,022
Trainable params:		9,985,022
Non-trainable params:		0

predict(element) vs predict(datasets)

```
model = load model(...)
file = open(..., 'a')
file.write(f"{datetime.now()}\t{0}\n")
for i, element in enumerate(datasets):
      prediction = model.predict(element)
      if prediction == 1:
             file.write(f"{datetime.now()}\t{i + 1}\n")
file.close()
```

```
model = load_model(...)
with open(..., 'w') as file:
    start_time = datetime.now()
    predictions_for_the_models = model.predict(datasets)
    finish_time = datetime.now()
    time_difference = (finish_time - start_time).total_seconds()
    file.write(f"{time_difference/datasets.shape[0]}\n")
```

Inference time vs. Real-time

dT vs CPU for different GPU, RES, and L values (Histogram)

