

First Considerations on the Electromagnetic and Mechanical Design of a

SAPIENZA UNIVERSITÀ DI ROMA

L. Alfonso¹, A. Bersani¹, L. Bottura³, B. Caiffi¹, S. Farinon¹, F. Mariani^{2,4}, S. Mariotto^{2,6}, R. Musenich ¹, D. Novelli ^{1,4}, A. Pampaloni ^{1,4}, T. Salmi ⁵

Block-Coil Dipole for the Muon Collider Ring

¹INFN - Genova, Italy ²INFN-LASA, Milano, Italy ³CERN, Switzerland ⁴Sapienza University of Rome, Italy ⁵ Tampere University, Finland ⁶ University of Milan, Italy

Introduction

Goal:

Feasibility study and new technological solutions for an innovative muon accelerator of a 10-km-long collider ring with a center-of-mass energy of 10 TeV.

Main Challenges:

- Short lifetime of muons (2.2 μs at rest)
- Production and cooling processes
- Shielding for muon decay

• High field magnets with large aperture and ambitious quench protection

Innovative Ends Winding Design

Main Mechanical Disadvantages:

- ReBCO = ceramic material \rightarrow extremely **brittle**
 - Crack with a tensile strain about 0.6 %
 - → Permanent degradation of its currentcarrying capability
- Delamination
- Tape cable can be bent BUT only with **limited flexibility**

Electromagnetic Optimization

- Sensitivity study using as free parameters the number of turns and the blocks positions
- Analytical harmonics calculation neglecting **magnetization** effects (current redistribution)
- Use of **Roxie** software

Magnetic Field Maps (T)

- Possible winding technique: flaredends
- Winding in the **easy-way** direction, i.e. along the broad face of the tape
- Assembly tests required

Estimation of the Hysteretic Losses

- Bean's critical state model
- Slab geometry
- Assumption of complete tape saturation

Preliminary Mechanical Calculation

- Homogenized coils surrounded by an infinitely rigid structure
- Standard type contacts **frictionless** between pancakes and structure

		8.12904 10.1148 12.1006 14.0864 16.0721 18.0579

10000
0.16402
-0.36534
0.01796
0.00008

Parameter	Value	U.M.	Parameter	Value	U.M.
I _{OP}	3515	А	ΔT _{MARGIN}	2.5±1%	К
J _{ENG}	542	A/mm ²	E _{STORED} /V	0.3	J/mm ³
J _{COPPER}	1820	A/mm ²	E _{STORED} /L	5.3 ¹	MJ/m
B ₁	16	Т	L	853 ¹	mH/m
B _{PEAK}	18.06	Т	N _{TAPES}	10720 ¹	-
T _{OP}	20	К	¹ Value referred to the entire cross-section		

analytical calculation

- phase (red rectangle area) \rightarrow worst-case scenario
- Estimation through magnetization calculation: $\succ \vec{M} = \frac{\vec{m}}{V} = -\frac{1}{2V} \int \vec{r} \times \vec{J}(B) \, dV$ $\left(\frac{A}{m}\right)$
- current:

 $\triangleright \quad Q_{sat} = M\overline{B}A = \frac{1}{4}J_C\overline{B}w_{SC}^2 t_{sc}$

- Use of **FEM** software ANSYS
- From electromagnetic FEM analysis:
- $F_x = 15.16 \text{ MN/m}$
- $F_v = -7.63 \text{ MN/m}$

•
$$E_{COIL} = 174^3$$
 GPa and $v_{COIL} = 0.3$

