

Baseline configurations, options, power and cost C. Rossi – 15th May 2025

- Recap of the Muon Collider preliminary cost study
- What is missing
- Directions from the cost analysis
- Critical spots and possible issues at the interfaces
- Concluding remarks

Muon Collider preliminary cost study

• The cost range for the different configurations was evaluated and compared to the Green Field scenario, where a cost for Civil Engineering of 50kCHF/m was assumed in the absence of a detailed study.

• A previous estimate was done in the frame of the Snowmass exercise in 2022, by using a multi-parameter cost model and starting from estimates provided by project proponents (B\$ in the scale below).

Project Cost (no esc., no cont.)	4	7	12	18	30	50
MC-3						
MC-10						

Configurations

Parameter	Symbol	unit	Site independent		CERN	
			Stage 1	Stage 2	Stage 1	Stage 2
Centre-of-mass energy	$E_{\rm cm}$	TeV	3	10	3.2	7.6
Target integrated luminosity	$\int \mathcal{L}_{ ext{target}}$	ab^{-1}	1	10	1	10
Estimated luminosity	$\mathcal{L}_{ ext{estimated}}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.8	17.5	0.9	7.9
Collider circumference	$C_{ m coll}$	km	4.5	11.4	11	11
Collider arc peak field	$B_{ m arc}$	Т	11	14	4.8	11
Collider dipole technology			Nb ₃ Sn	HTS	NbTi	Nb ₃ Sn
						or HTS

 As for costing, we intend to stay with the CERN scenario and try to complete the cost and power analysis as much as possible before the end of 2025.

What are we missing (machine)

- Accumulator and compressor Rings (they will be estimated in the next months)
- Muon charge separation and merging
- Final cooling (conceptual)
- SC Linac
- Collider ring : Beam dynamics and realistic magnets. Field-free length.

What are we missing (systems)

- Decay channel shielding, solenoids ? (my figures may be incomplete)
- Final cooling RF
- RLAs magnets
- Magnet cryostats ? (for RF this was included)
- Vacuum in general (is 20kCHF/m a reasonable estimate ?)

• In the two configurations, the same technologies weigh differently on the cost uncertainty, showing the path for some risk mitigation and priorities in case of energy staging.

The Cooling Channel challenge

• Expect changes in the beam dynamics and cavity design.

Carlo Rossi

• Modular design and standardization may help to adapt to changes

Initial and new E_{peak} copper walls - AM stages

Cell	$E_{\rm Mag}$	e_{Mag}	Coil	J_E	B _{peak}
	(MJ)	(MJ/m ³)		(A/mm ²)	(T)
A1	5.4	21	A1-1	57.6	5.2
A2	22.1	106.1	A2-1	149.5	11.6
A3	5.0	49.5	A3-1	131.5	10.1
A4	8.0	92.3	A4-1	193.2	13.8
B 1	9.1	49.8	B1-1	96.9	7.7
B2	15.6	64.2	B2-1	102.1	9.2
B3	36.9	105.9	B3-1	127.9	12.9
B 4	75.6	149.9	B4-1	88.5	16.1
B5	17.3	88.9	B5-1	179.6	14.7
B5			B5-2	154.0	14.7
B6	8.3	96.6	B6-1	214.4	15.3
B6			B6-2	211.5	12.0
B6			B6-3	212.7	12.4
B7	8.2	87.7	B7-1	183.3	14.7
B7			B7-2	153.9	11.1
B7			B7-3	210.3	13.2
B 8	8.8	92.1	B8-1	193.7	16.5
B 8			B8-2	202.1	15.4
B 8			B8-3	212.8	13.2
B9	7.5	76.5	B9-1	256.4	17.2
B9			B9-2	88.4	10.0
B9			B9-3	204.9	13.2
B10	5.0	68.6	B10-1	326.8	19.2
B10			B10-2	146.1	11.1
B10			B10-3	207.8	12.5

The Cooling Channel challenge

- Integrate the absorbers
- Interface to cryogenics
- Alignment tolerances and strategy for alignment
 - Admissible alignment tolerances by the beam dynamics team
- Beam instrumentation
 - Preliminary layout of the required beam instrumentation by the beam dynamics team, possibly provide dynamic range and bandwidth

INFN cell demonstrator

Carlo Rossi

From the magnet session \rightarrow Solenoids - M. Statera

• Conclude on the most appropriate metrics to apply, try to include a notion of technical risk.

RCS Magnets and powering

 Cost and implications of the different options for the RCS magnet powering may affect the CE and General Infrastructure design.

Collider Ring Combined Function Magnets

D. Novelli

- The large gap in the B-G plots between the requested performance (triangles) and what appears as achievable today imposes an iteration with the design team.
- New input provided to the beam physicists.

Concluding remarks

- A close interaction / coordination among the design team and the WPs in charge of the technical systems is necessary for an effective progress in the selection of the most appropriate options.
- The cost and power exercise will be properly **documented** to allow the continuation of this work.
- A kind of quality assurance system concerning parameters and configurations would be beneficial in assuring consistency and tracking of the different efforts.
- Permanently **include cost and power** considerations into the facility design may help with the selection of technical options.

