

MuCol

Funded by the European Union

IFAST

Supported by MUST (MUon collider STrategy network), part of I.FAST EU Project

Dynamic Analysis of Normal-Conducting Magnets

D. Moll¹, P. Viarouge², H. De Gersem¹, M. Breschi³, A. Macchiagodena³, P. L. Ribani³, F. Boattini⁴, L. Bottura⁴, E. Simoni⁵ ¹Technical University Darmstadt, Germany, ²Université Laval, Canada, ³University of Bologna, Italy, ⁴CERN, Switzerland, ⁵HEIA-FR, Switzerland

IMCC and MuCol Annual Meeting May 2025

- Time-domain analysis of normal-conducting magnets
 - Field quality evaluation
 - Excitations with higher duty cycles
- Frequency-Domain Analysis & Equivalent Circuit Modeling
 - Frequency- Domain Loss Evaluation Method
 - Equivalent Circuit & Nonlinear Dynamic Modeling
 - Cross-Validation :Simplified Time-Harmonic & High-Fidelity Transient FEA Model

Time-domain analysis of normal-conducting magnets

- Field quality evaluation
- Excitations with higher duty cycles

Frequency-Domain Analysis & Equivalent Circuit Modeling

- Frequency- Domain Loss Evaluation Method
- Equivalent Circuit & Nonlinear Dynamic Modeling
- Cross-Validation :Simplified Time-Harmonic & High-Fidelity Transient FEA Model

Fast ramping magnets

• Main components:

- Laminated iron core: nonlinear, hysteretic
- **Conductors**: skin- & proximity effects
 - Cooling system?
- Beam pipe: induced currents

Different operation modes:

- RCS 2,3,4: zero mean operation
- RCS 1 with DC offset
- Duty cycle ~ 1%

	RCS1	RCS2	RCS3	RCS4
Inj Energy [GeV]	63	314	750	1500
Acc. length [km]	5.99	5.99	10.7	35.0
Res. mags length [km]	3.65	2.54	4.37	20.38
Binj in gap [T]	0.36	-1.8	-1.8	-1.8
Bextr in gap [T]	1.8	1.8	1.8	1.8
B ramp time Tramp [ms]	0.35	1.10	2.37	6.37
Dipoles Pmax [GW]	111	54	43	74
Dipoles Vmax [MV]	2.4	1.1	0.9	1.5

IMCC Interim report, 2024

Numerical modeling - Maxwell

- Maxwell's equations:
 - Magnetic Gauss: $\nabla \cdot \mathbf{B} = 0 \Rightarrow \mathbf{B} = \nabla \times \mathbf{A}$
 - Faraday-Lenz: $\nabla \times \mathbf{E} = -\dot{\mathbf{B}} \Rightarrow \mathbf{E} = -\dot{\mathbf{A}} \nabla \boldsymbol{\varphi}$
 - Ampère: $\nabla \times \mathbf{H} = \mathbf{J}$
- Ohm's law: $\mathbf{J} = \sigma \mathbf{E} = -\sigma \dot{\mathbf{A}} \sigma \nabla \boldsymbol{\varphi} = -\sigma \dot{\mathbf{A}} + \sum_m u_m \sigma \mathbf{x}_m$

- Distribution functions
- Voltages of every conductor
- Ampère's law: $\nabla \times \mathbf{H} + \sigma \dot{\mathbf{A}} = \sum_m u_m \sigma \mathbf{x}_m$
 - Constitutive relationship $A \rightarrow H$ (or $B \rightarrow H$) needed
 - Linear: $\mathbf{H} = \mu_0^{-1} (1 + \chi)^{-1} (\mathbf{B} \mathbf{B}_r)$
 - Nonlinear, anhysteretic, isotropic: $|\mathbf{H}| = LUT(|\mathbf{B}|)$
 - Hysteretic models: Energy-based, Preisach, ...

Hysteretic magnetic material model

- Magnetization **M**: $\mathbf{B} = \mu_0 \mathbf{H} + \mu_0 \mathbf{M}$
- $\mathbf{M} = \sum_{k} w_{k} \mathbf{M}_{an} \mathbf{H}_{rev}^{k} \mathbf{H}$, requires:
 - 1. Weights $\sum_k w_k$ =1
 - 2. Anhysteretic magnetization operator Man
 - 3. Distinct history operators H_{rev}^k

- $\mathbf{H} \rightarrow \mathbf{B}$ straightforward, inversion $\mathbf{B} \rightarrow \mathbf{H}$ cumbersome
 - Fixed-point iteration needed

A. Bergqvist, "Magnetic vector hysteresis model with dry friction-like pinning", Physica B, 233:342–347, 1997

F. Henrotte et al., "An energy-based vector hysteresis model for ferromagnetic materials", COMPEL, 25:71–80, 2006.

Ferromagnetic material model – Eddy currents

- Dipole magnet length: 5 m \gg gap height: 30mm \Rightarrow **2D analysis**
- Laminates feature eddy currents in x-y plane
 - Not explicitly included in 2D simulations
 - \Rightarrow Homogenization approach: $\mathbf{H} = \mathbf{H}_{\text{static}} + \frac{\sigma d^2}{12} \dot{\mathbf{B}}$
- Loss calculation:
 - Resistive: $p_{\rm ohm} = |\mathbf{J}|^2 / \sigma$
 - Eddy currents: $p_{eddy} = \frac{\sigma d^2}{12} |\dot{\mathbf{B}}|^2$
 - Hysteresis: $p_{\text{hyst}} = \sum_{k} (\mathbf{H}_{\text{static}} \mathbf{H}_{\text{rev}}^{\text{k}}) \cdot \mu_{0} \dot{\mathbf{M}}_{\text{k}}$

Insights of FEM analysis

- Time-domain analysis of normal-conducting magnets
 - Field quality evaluation
 - Excitations with higher duty cycles
- Frequency-Domain Analysis & Equivalent Circuit Modeling
 - Frequency- Domain Loss Evaluation Method
 - Equivalent Circuit & Nonlinear Dynamic Modeling
 - Cross-Validation :Simplified Time-Harmonic & High-Fidelity Transient FEA Model

Field quality analysis

- Field quality evaluated on several 5 mm reference circles. (All in vacuum chamber)
- Multipole coefficients $C_n = A_n + jB_n$ [T] as function of time and position

Beam pipe affecting field quality

Without beam pipe:

With beam pipe:

Relative multipole coefficients

- Relative multipole coefficients: $\frac{||C_n||_1}{||B_1||_1} = \frac{\int |C_n| dt}{\int |B_1| dt} = R_n(r = 5 \text{mm})$
- Requirement: **10 Units on 10 mm reference circle** $\Leftrightarrow R_n(r = 10 \text{ mm}) < 10^{-4}$
 - $R_n(r = 5\text{mm}) = \left(\frac{5\text{mm}}{10\text{mm}}\right)^{n-1} R_n(10\text{mm}) < \left(\frac{1}{2}\right)^{n-1} 10^{-4}$ Green region
- Strong quadrupole and sextupole coefficients: Shim design recommended / ongoing Without beam pipe:
 With beam pipe:

- Time-domain analysis of normal-conducting magnets
 - Field quality evaluation
 - Excitations with higher duty cycles
- Frequency-Domain Analysis & Equivalent Circuit Modeling
 - Frequency- Domain Loss Evaluation Method
 - Equivalent Circuit & Nonlinear Dynamic Modeling
 - Cross-Validation :Simplified Time-Harmonic & High-Fidelity Transient FEA Model

Excitations with higher duty cycles

15

Time domain analysis:

- + Captures all details
- Too slow for optimization routines

Frequency domain analysis:

- + Fast heuristic
- Assumes finite number of significant frequencies
 - Requires larger duty cycles

Losses per period

- Copper loss: 75.93 J/m
- Titanium loss: 16.46 J/m
- Iron loss: 25.11 J/m
 - Hysteresis: 8.76 J/m
- Copper loss: 69.21 J/m
- Titanium loss: 16.43 J/m
- Iron loss: 22.89 J/m
 - Hysteresis: 7.48 J/m

- Copper loss: 48.24 J/m
- Titanium loss: 16.31 J/m
- Iron loss: 22.69 J/m
 - Hysteresis: 7.41 J/m

16

- Time-domain analysis of normal-conducting magnets
 - Field quality evaluation
 - Excitations with higher duty cycles

Frequency-Domain Analysis & Equivalent Circuit Modeling

- Frequency- Domain Loss Evaluation Method
- Equivalent Circuit & Nonlinear Dynamic Modeling
- Cross-Validation :Simplified Time-Harmonic & High-Fidelity Transient FEA Model

Problem Statement

Pulsed operation of Normal Conducting magnets leads to additional losses such as :

- Magnetic losses in the ferromagnetic yokes
- Joule losses in windings (skin & proximity effects)

- Accurate **loss evaluation** is critical for:
 - Global efficiency & Magnet Thermal design
- A dynamic magnet model or equivalent circuit is essential for:
 - Power converter sizing
 - Current pulse control strategy development

Frequency- Domain Loss Evaluation Method

 Objective: Balance accuracy& computational speed for loss estimation in pulsed steadystate regimes with Time-harmonic FEA for efficient iterative optimal design

- Time-Harmonic FEA results allow identification of an equivalent circuit with the same frequency response, usable in time-domain simulation
 - 3 R-L cells fitted by least-squares to match impedance frequency response obtained by Timeharmonic FEA & to model induced eddy current in bars
- Nonlinear extension of the dynamic model:
 - L(I) obtained via saturated magnetostatic FEA using magnetic material B(H)
 - Analytical fit \rightarrow nonlinear inductance $L_o(i_o)$ inserted into equivalent circuit

Cross-Validation Between Simplified Time-Harmonic and High-Fidelity Transient FEA Model

- Benchmark: Transient FEA with magnetic saturation & dynamic hysteresis
- Simplified Time-Harmonic FEA (linear, frequency-domain) faster to compute steady-state Joule & magnetic losses
- Loss evaluation with both methods

nternational ION Collider Iaboration

- for steady-state operation on 2T_p
- Valid despite simplified assumptions (steady-state, linear)

Vlagnet Length 1 m Transient FEA with a		Simplified	
Magnet Loss (W)	high-fidelity model	Time-harmonic FEA	% err
Copper loss	346.05	339.11	-2.0%
Ti Chamber loss	82.17	113.34	37.9%
Total Copper loss	428.22	452.45	5.7%
Iron Loss	114.45	142.49	24.5%
Total loss	542.67	594.94	9.6%

Cross-Validation Between Simplified Time-Harmonic and High-Fidelity Transient FEA Model

- Dynamic Validation of the Equivalent Circuit Using Transient FEA
- Validation scenario:
 - Nonlinear hybrid equivalent circuit model driven by pulsed power converter in Simulink
 - Simulated input magnet voltage applied to Voltage supplied full Transient FEA model

Conclusion & Perspectives

- High-Fidelity Transient FEA Magnet Model with saturation for:
 - accurate dynamic loss estimation under pulsed regime
 - spatial field quality analysis
- Simplified Time Harmonic FEA Methodology :
 - for loss computation under steady-state pulsed regime
 - for identification of nonlinear hybrid equivalent circuit model usable in circuit simulations & Magnetconverter-control co-design
 - suitable for implementation in iterative design optimization with computational efficiency
- Cross-validation with acceptable accuracy
- High-fidelity &simplified FEA models are complementary tools used at different levels of modeling complexity within an integrated CAD & simulation environment.


```
Funded by the European Union
```


Supported by MUST (MUon collider STrategy network), part of I.FAST EU Project

