# Update of vFFA Study

Max Topp-Mugglestone

max.emil.topp-mugglestone@cern.ch



## Contents:

- Introduction to the vFFA
  - What is a vertical-excursion Fixed-Field Accelerator?
  - Why are we interested?
- Parameter studies of the vFFA for muon acceleration
- Remaining design objectives
- Further concepts

# **RCS** challenges



## A brief (non-exhaustive) list of problems:

- Ramping magnets
  - $\rightarrow$ Rate of ramping can be limiting factor on muon survival
  - $\rightarrow$  Ramping requires normal-conducting magnets
  - $\rightarrow$  Construction and distribution of power converters, storing energy, etc..
- Changing path length (hybrid RCS)
  - Changing time of flight  $\rightarrow$  requirement for tunable RF ?

### What if we didn't have to deal with any of these?



# Fixed Field Accelerators

# Time-independent magnetic fields means...

- No ramp times
  - Rate of acceleration limited only by RF
  - Mitigates engineering challenges of designing and powering fast-ramping dipoles
- All magnets can be superconducting
- Orbit position moves when energy changes

# Spatial dependence of magnetic fields allows tune control

#### "Conventional" horizontal-excursion FFA (hFFA):

Orbits move outwards with increasing

energy Fields increase radially



For hFFA options for muon acceleration see presentation by J. Scott Berg in 2023 IMCC meeting

## Vertical-Excursion Fixed Field Accelerators

#### Vertical-excursion FFA (vFFA):

- Higher energy orbits are vertically translated copies of lower energy orbits
- Zero chromaticity if fields increase with vertical coordinate (Z) following scaling law

 $B = B_0 e^{mZ}$ 

#### Zero path length difference means...

- $\rightarrow$  Zero momentum compaction factor  $\alpha_c$
- $\rightarrow$  Transitionless
- $\rightarrow$  Quasi-isochronous for relativistic particles
  - $\rightarrow$  on-crest acceleration can be used

#### Vertical-excursion FFA (vFFA):

Orbits move upwards with increasing energy Fields increase vertically



## **Properties of the vFFA**

Non-planar closed orbit

Intrinsically coupled optics

Scaling laws  $\rightarrow$  optics determined by closed orbit and field index m



F-magnet is shaded in green; D-magnet is shaded in blue.

#### Analytic model of vFFA has been developed

"Scaling Fixed Field Accelerators: theory and modelling of horizontal- and vertical-excursion accelerators" – PhD thesis 2024

## **Properties of the vFFA**

**Closed orbit** 



## Geometric constraints can be used to determine closed orbit from input parameters

Some important variables for each magnet:  $\rho$ ,  $\gamma$ , r(radius of curvature, inclination of plane of curvature, radius wrt machine centre)

$$\begin{aligned} \theta_D &= \arctan\left(\frac{\sqrt{\left(\tan\frac{\pi}{N} - \cos\gamma_F \tan\theta_F\right)^2 + \sin^2\gamma_F \sin^2\theta_F \left(\tan\frac{\pi}{N}\cos\gamma_F \tan\theta_F + 1\right)^2}}{\sqrt{1 - \sin^2\gamma_F \sin^2\theta_F} \left(\tan\frac{\pi}{N}\cos\gamma_F \tan\theta_F + 1\right)}\right) \\ \sin\gamma_D &= \frac{\sin\theta_F}{\sin\theta_D} \sin\gamma_F, \\ \rho_F &= r_0 \frac{\tan\beta_F}{\sin\theta_F + (1 - \cos\theta_F)\cos\gamma_F \tan\beta_F}, \\ r_1 &= \rho_F \frac{\sin\theta_F}{\sin\beta_F}, \\ r_2 &= r_1 \frac{\cos\beta_F + \tan\theta_F\cos\gamma_F \sin\beta_F}{\cos\left(\frac{\pi}{N} - \beta_D\right) + \tan\theta_F\cos\gamma_F \sin\left(\frac{\pi}{N} - \beta_D\right)}, \\ \rho_D &= r_2 \frac{\sin\beta_D}{\sin\theta_D}, \\ r_3 &= r_2\cos\beta_D - \rho_D \left(1 - \cos\theta_D\cos\gamma_D\right). \end{aligned}$$

## **Properties of the vFFA**

#### **Magnet body Hamiltonian**



x, z: horizontal and vertical transverse coordinates

*m* : normalised field gradient

 $\rho$ : radius of curvature

 $\gamma$  : inclination (angle of the plane of curvature in magnet)

*m* is a constant around the ring

 $\rightarrow$  Sign of focusing terms can only be changed if sign of  $\rho$  changes

 $\rightarrow$  reverse bends are required

Hamiltonian has normal quad + skew quad + geometric terms

# vFFA parameter study (stage 1)

## Analytic model of vFFA used to develop proposal for equivalent vFFA FODO ring to RCS1

Constraints:

MuCol Milestone 17 Report - WP5 - Tentative design of the FFA (2025)

- Footprint no larger than RCS1
- Peak field on orbit <8T
- Drift lengths > 1m
- Excursion < 5 cm

|                                           | RCS1     | Stage 1 vFFA   |
|-------------------------------------------|----------|----------------|
| Circumference [m]                         | 5990     | 5990           |
| Injection Energy [TeV]                    | 0.06     | 0.06           |
| Extraction Energy [TeV]                   | 0.3      | 0.3            |
| NC Ramped Magnets                         | Yes      | No             |
| SC Fixed magnets                          | No       | Yes            |
| Ramp Rate [T/s]                           | 4200     | 0              |
| Vertical Excursion [m]                    | 0        | 0.048          |
| Relative path length difference           | 0.0      | 0.0            |
| Peak Dipole Field On Orbit [T]            | 1.8 (NC) | 6.93           |
| Peak Dipole Field (Good Field Region) [T] |          | 12.52          |
| Drift length [m]                          |          | 1.18           |
| Tune                                      |          | (0.382, 0.079) |



# vFFA parameter study (stage 4)

## Equivalent vFFA FODO ring to RCS4

## Constraints:

- Footprint no larger than RCS4
- Peak field on orbit <16T
- Drift lengths > 1m
- Excursion < 10 cm

|                                           | RCS4                  | Stage 4 vFFA   |
|-------------------------------------------|-----------------------|----------------|
| Circumference [m]                         | 35000                 | 35000          |
| Injection Energy [TeV]                    | 1.5                   | 1.5            |
| Extraction Energy [TeV]                   | 5                     | 5              |
| NC Ramped Magnets                         | Yes                   | No             |
| SC Fixed magnets                          | Yes                   | Yes            |
| Ramp Rate [T/s]                           | 565                   | 0              |
| Vertical Excursion [m]                    | 0                     | 0.099          |
| Relative path length difference           | $1.71 \times 10^{-6}$ | 0.0            |
| Peak Dipole Field On Orbit [T]            | 16                    | 13.59          |
| Peak Dipole Field (Good Field Region) [T] |                       | 29.04          |
| Drift length [m]                          |                       | 1.03           |
| Tune                                      |                       | (0.460, 0.057) |





# vFFA parameter study conclusions

Simple vFFA FODO lattices have been proposed based on analytic formalism

## Equivalent vFFA lattices to RCS1, RCS4 exist with

- No ramped magnets
  - Fully SC  $\cdot$  No issues for power converter, energy storage
- No requirement for RF frequency ramping
- Zero momentum compaction
- Fixed tunes
- Possibility of **on-crest acceleration** (potential  $\sqrt{2}$  improvement in accelerating voltage for given cavity power)
- Excursion less than: 5 cm (vFFA1), 10 cm (vFFA4)
- On-orbit dipole fields less than: **7 T** (vFFA1), **13.6 T** (vFFA4)

# Remaining Design Objectives

#### Longitudinal behaviour of the vFFA has not been studied in this regime

- How will bunch structure change after passing through isochronous machine?
  - Is there a need to perturb isochronicity to preserve longitudinal properties of bunch?
- 6D simulation is needed

#### Large change in orbit position can be problematic for acceleration

- High-frequency RF cavities have limited aperture
- Off-axis beam in RF cavities will excite high order modes (HOMs)
- Coupling between transverse and longitudinal planes
  - Increases need for distributed RF

#### High normalized field gradient $m \rightarrow$ rapid growth of fields away from axis Coupled optics $\rightarrow$ how do we design an extraction system?

Two takeaways:

- Full 6D numerical simulation of vFFA lattices must be completed
- Are there ways to mitigate some of the other problems?



# vFFA1 Simulation

## vFFA1 has been simulated using the FFA code FIXFIELD

- Analytic model was able to predict closed orbit, position magnets, and identify valid lattice in previously untested region of parameter space
- Disagreement between analytic model and simulation on range of stable m-values  $_{\rightarrow}$  excursion of simulation is larger than analytic model (m ~21/m numerical, m ~30/m analytic)
- However, demonstrated success of analytic model for finding new lattices and use of analytic model insights to optimize lattice

#### 6D tracking studies now underway!

vFFA1 simulation to be used as testbed for of **further concepts** 

## Coupling in the vFFA

#### Magnet body Hamiltonian

$$\mathcal{H} \simeq \frac{p_x^2}{2} + \frac{p_z^2}{2} - \frac{1}{\rho + \frac{\sin\gamma}{m}} \left[ \cos\gamma \left( m + \frac{2\sin\gamma}{\rho} \right) xz - \frac{1}{2}m \left( x^2 - z^2 \right) \sin\gamma \right] + \frac{1}{\rho \left( \rho + \frac{\sin\gamma}{m} \right)} \left( x^2 \cos^2\gamma + z^2 \sin^2\gamma \right) \right]$$

geometric terms – always present skew quad term – proportional to  $\cos \gamma$ normal quad term – proportional to  $\sin \gamma$ 

If  $\gamma = 90^{\circ}$ , we can remove the coupling in this Hamiltonian!

However... cells need at least 2 magnets.

#### **Closed orbit equations**



# **Decoupled** insertions

 Inclination of both magnets can be 90° if the net bending angle of the cell is zero



- A straight insertion with a 90° inclination enables the complete negation of coupling over the length of the straight
- Analytic theory for vFFA straight cell design has been completed
- N.B. a vFFA FODO straight with a 90° inclination is equivalent to an hFFA FODO straight – hFFA straight cells have been tested experimentally (J.-B. Lagrange, *Study of zerochromaticity in FFAG accelerators*. PhD thesis, Kyoto U., 2012.)

## **Decoupled** insertions

When optics are decoupled:

• Orbit can be kicked/bumped in one plane without affecting the other

 $\rightarrow$  Injection and extraction design becomes much less restrictive

• Betatron oscillations can be induced in the dispersive plane

 $\rightarrow$  Possibility of mitigating transverse/longitudinal issues from RF by tuning cell phase advance between cavities

 $\rightarrow$  Enables design of dispersion suppressors

## **Dispersion** suppression

## In a decoupled straight:



3 regions with different dispersions  $D_Z = \frac{1}{m}$ Initial region:  $D_1$  is at nominal value for arcs Target region :  $D_3$  is at desired value (can be zero) Dispersion suppressor :  $D_2 = (D_1 + D_3)/2$ 

#### Allows separation of arc excursion from RF constraints:

More freedom in choice of arc parameters · lower demands on aperture of RF · lessen severity of HOM issues

## Conclusions

- vFFA equivalents to RCS1, RCS4 have been proposed using analytic model
  - vFFA RCS1 equivalent has been simulated numerically

### • vFFA FODO rings can be built with

 Equivalent footprint to RCS designs · Achievable dipole fields · Fully superconducting magnets · Small orbit excursion
...for an energy-efficient, zero-chromatic, isochronous accelerator

## • Coupling effects can be negated in straights

- Could help solve injection/extraction issues + dispersion suppression
- Use of dispersion suppression allows
  - Dispersion-suppressed RF insertions · Increased freedom in choice of normalised field index in arcs (possibility to lower peak fields)

## The future



## vFFA offers promising alternative to RCS

- Able to circumvent a number of key issues
- Analytic design tool enables **development of new lattices**
- Further development of the concept is needed
  - Tradeoffs and potential mitigation strategies have been identified
  - End-to-end 6D simulation must be completed
- Fully SC energy-efficient rapid acceleration is possible !!

## The future





(Saint-Genis Pouilly in 2050 when we build the muon vFFA)

13/05/2025