











Non Collider Collaboration

# Dipole magnet designs for the Muon Collider

<u>S. Mariotto</u><sup>1,2</sup>, L. Alfonso<sup>3</sup>, A. Bersani<sup>3</sup>, B. Caiffi<sup>3</sup>, S. Farinon<sup>3</sup>, F. Mariani<sup>2,4</sup>, D. Novelli<sup>3,4</sup>, A. Pampaloni<sup>3</sup>, T. Salmi<sup>5</sup>, L. Bottura<sup>6</sup> <sup>1</sup>University of Milan, <sup>2</sup>INFN – Milan, <sup>3</sup>INFN – Genoa, <sup>4</sup>Sapienza University of Rome, <sup>5</sup>Tampere University, <sup>6</sup>CERN



Funded by the European Union

Funded by the European Union (EU). Views and opinions expressed are however those of the author only and do not necessarily reflect those of the EU or European Research Executive Agency (REA). Neither the EU nor the REA can be held responsible for them

### **COLLIDER RING MAGNETS**

### Task 7.4 Collider Ring Magnets (INFN)

#### **Motivation:**

- Analyze realistic technical design options for the development of superconducting magnets for the 10 TeV Muon Collider main ring
- 2. Identify technical challenges limiting magnet performance and propose innovative technologies to be further developed in the R&D phase following the ongoing feasibility study.

### **INITIAL TARGET:** $B_d \sim 16-20T$ in 150 mm bore:

- Highest field possible to minimize ring
- Open midplane or large aperture (150 mm bore diameter) for shielding against heat (500 W/m) and radiation loads
- Combined function (dipole + quadrupole) to minimize neutrino hazard











### **INTERACTION WITH OTHER WPs**



Collection of requirement and constraints coming from other WP studies to select most challenging magnet configuration for technical design study:

- 1. Beam Lattice design:
  - Magnet type / Field / Aperture
- 2. Cryogenic studies:
  - Operating Temperature, Thermal Insulation thickness
- 3. Radiation heat loading/degradation
  - Shielding thickness, Radiation heat load, radiation dose

|                                     | 2 cm                      | 3 cm                      | 4 cm                      |
|-------------------------------------|---------------------------|---------------------------|---------------------------|
| Beam aperture (radius)              | 23.5 mm                   | 23.5 mm                   | 23.5 mm                   |
| Outer shielding radius              | 43.5 mm                   | 53.5 mm                   | 63.5 mm                   |
| Inner coil aperture (radius)        | 59 mm                     | 69 mm                     | 79 mm                     |
| Power penetrating tungsten absorber | 19.1 W/m (3.8%)           | 8.2 W/m (1.6%)            | 4.1 W/m (0.8%)            |
| Peak power density in coils         | $6.5 \text{ mW/cm}^3$     | $2.1 \text{ mW/cm}^3$     | $0.7 \text{ mW/cm}^3$     |
| Peak dose in Kapton (5/10 years)    | 56/112 MGy                | 18/36 MGy                 | 7/14 M@y                  |
| Peak dose in coils (5/10 years)     | 45/90 MGy                 | 15/30 MGy                 | 5/10 MGy                  |
| Peak DPA in coils (5/10 years)      | $8/16 \times 10^{-5}$ DPA | $6/12 \times 10^{-5}$ DPA | $5/10 \times 10^{-5}$ DPA |

Courtesy of Anton Lechner – IPAC24 Conference https://cds.cern.ch/record/2912945

S. Mariotto - Dipole Magnet Design @ IMCC 2025

#### Courtesy of Patricia Borges de Sousa https://indico.cern.ch/event/1250075/contributions/5357594/



N.B bore<sub>magnet</sub>= beam aperture (23.5 mm) + [Cu layer beam screen,+ Insulation space & heat intercept + beam pipe + Kapton insulation + clearence] (15.5 mm) + W<sub>abs</sub> (30-40 mm)

### **ARC Magnet Shielding assumption:**

- T<sub>op</sub> < 10 K:
- W<sub>abs</sub> = 4 cm (P<5 W/m) / 160 mm aperture
- T<sub>op</sub> = 20 K:

W<sub>abs</sub> =3 cm (P<10 W/m) / 140 mm aperture



### DIFFERENT MAGNET OPTIONS: SPECS FROM BEAM OPTIC STUDIES

### ARC[1]

#### Dipole:

B<sub>d</sub>=16 T in 138 mm bore aperture

#### **Combined magnets:**

 $B_d$ =8 T, G1=+-320 T/m bore in 130 mm bore aperture

#### **Chromatic Correction**

Dipole[1]:

B<sub>d</sub>=16 T in 138 mm bore aperture **Combined magnets:** 

 $B_d$ =4 T, G1=+-240 T/m in 170 mm bore aperture  $B_d$ =4 T, G2=+-330 T/m<sup>2</sup> in 130 mm bore aperture



C. Carli, K.Skoufaris, M. Vanwelde

[1] K. Skoufaris et al. ``Update on collider optics design", IMCC Annual Collaboration Meeting 2024 https://indico.cern.ch/event/1325963

[2] M. Vanwelde et al., `` Status of the 10 TeV centerof-mass collider lattice and IR design'', IMCC Detector and MDI workshop 2024 https://indico.cern.ch/event/1402725

Several magnet types are necessary for the collider lattice: Dedicated FEM study for each configuration NOT POSSIBLE

 $\rightarrow$  **Analytical tool** to evaluate space parameters Field/Aperture

S. Mariotto - Dipole Magnet Design @ IMCC 2025



**Interaction region**[2]









Selection of interesting design configuration using A-B plots for the ARC DIPOLE collider magnets in parallel with phase space exploration

#### Main outcome from Analytical exploration:

Internationa

- Nb<sub>3</sub>Sn limited by operating margin and Peak stress for B >14 T
- HTS (ReBCO) limited by Cost and protection.
  - Metal insulated (MI) or Not Insulated (NI) coils must be used.

S. Mariotto - Dipole Magnet Design @ IMCC 2025



R [T]



### **HTS CABLE ASSUMPTIONS**



#### Fujikura FESCH-12 AP tape [1]



[1] https://www.fujikura.co.uk/netalogue/pdfs/Fujikura%20Superconductor%20Guide.pdf
[2] D. Uglietti at al. "Non-twisted stacks of coated conductors for magnets: Analysis of inductance and AC losses" https://doi.org/10.1016/j.cryogenics.2020.103118



We want to use not twisted stacked tapes cable.

Twist and transposition not effective in reducing the AC losses for coated conductors [2], while increasing cost and complexity

2 tapes co-wounded with 50  $\mu m$  thick SS layer (x2)



12 11111

Maximum allowable stresses (only tape without metal layer):

- X-direction:  $\sigma_{MAX} = -100$  MPa
- Y-direction:  $\sigma_{MAX} = -400$  MPa
- XY-direction: σ<sub>MAX</sub> > 19 MPa

S. Mariotto - Dipole Magnet Design @ IMCC 2025



### **ELECTROMAGNETIC DESIGN:**



BLOCK-COIL LAYOUT Development of two Different magnet design: Block-Coil vs Cos-theta layout

Block-coil advantages:

- Cable configuration suitable to coil geometry winding
- Better Lorentz forces stress management Disadvantages:
- Field quality optimization more difficult



 $B_{peak} = 18.06 \, \mathrm{T}$ 

| Parameter             | Value | U.M.              |
|-----------------------|-------|-------------------|
| I <sub>OP</sub>       | 3515  | А                 |
| J <sub>ENG</sub>      | 542   | A/mm <sup>2</sup> |
| J <sub>COPPER</sub>   | 1820  | A/mm <sup>2</sup> |
| <b>B</b> <sub>1</sub> | 16    | Т                 |
| B <sub>PEAK</sub>     | 18.06 | Т                 |
| T <sub>OP</sub>       | 20    | К                 |



| Parameter              | Value            | U.M.              | Harmonics <sup>1</sup> | Value |
|------------------------|------------------|-------------------|------------------------|-------|
| ΔT <sub>MARGIN</sub>   | 2.5±1%           | К                 | B3                     | 0.16  |
| Aperture               | 140              | mm                | b5                     | -0.36 |
| E <sub>STORED</sub> /V | 0.3              | J/mm <sup>3</sup> | b7                     | 0.02  |
| E <sub>STORED</sub> /L | 5.3 <sup>1</sup> | MJ/m              | Conductor Quantity     |       |
| L                      | 853 <sup>1</sup> | mH/m              | N <sub>tapes</sub>     | 10720 |

<sup>1</sup>HTS persistent current effect **NOT considered** 

Courtesy of L. Alfonso @ IMCC-2025 https://indico.desy.de/event/45968/contributions/185355/



### **ELECTROMAGNETIC DESIGN:**

 $COS(\theta) LAYOUT$ Development of two Different magnet design: Block-Coll vs Cos-theta layout **Costheta Advantages** 

- Minimization of conductor quantity in coil cross-section ٠
- Better field quality optimization (here considering also HTS persistent current) ٠ Costheta Disadvantages
- Stress management (layer supports still to be implemented) •





Courtesy of F. Mariani @ IMCC-2025 https://indico.desy.de/event/45968/contributions/185356/

| Parameter           | Value | U.M.              |
|---------------------|-------|-------------------|
| I <sub>OP</sub>     | 3700  | А                 |
| J <sub>ENG</sub>    | 571   | A/mm <sup>2</sup> |
| J <sub>COPPER</sub> | 1916  | A/mm <sup>2</sup> |
| B <sub>1</sub>      | 16    | Т                 |
| B <sub>PEAK</sub>   | 18.2  | Т                 |
| Т <sub>ор</sub>     | 20    | К                 |

| Parameter              | Value  | U.M.              | Harmonics <sup>1</sup> | Value |
|------------------------|--------|-------------------|------------------------|-------|
| ΔT <sub>MARGIN</sub>   | 2.5±1% | К                 | b3                     | 4     |
| Aperture               | 140    | mm                | b5                     | -5    |
| E <sub>stored</sub> /V | 0.29   | J/mm <sup>3</sup> | b7                     | -2    |
| E <sub>stored</sub> /L | 3.9    | MJ/m              | Conductor Quantity     |       |
| L                      | 534    | mH/m              | N <sub>tapes</sub>     | 8272  |

<sup>1</sup>HTS persistent current effect **considered** 





### PERSISTENT CURRENT MODELS



Development of electromagnetic modelling for **FAST** persistent current simulation in HTS magnet cross-section:

- Tape orientation optimization
- Induced peak lorentz forces on conductor estimation

### Analytical Model in MATLAB (Brandt) or FEM Model (COMSOL)

• Compatible results on hysteretic losses



| Losses Calculation       | COMSOL | MATLAB |
|--------------------------|--------|--------|
| <b>Q</b> <sub>hyst</sub> | 22.5   | 22     |
| Harmonic                 | COMSOL | MATLAB |
| b3                       | 3      | 4      |
| b5                       | -7     | -0.2   |
| b7                       | -3     | -0.05  |

Harmonic content **strongly affected** by **critical current saturation** in tape cross-section

#### Courtesy of F. Mariani @ IMCC-2025 https://indico.desy.de/event/45968/contributions/185356/



S. Mariotto - Dipole Magnet Design @ IMCC 2025



### **MECHANICAL DESIGN**



#### Uniform current distribution





| ANSYS 2022 R2<br>Build 22.2<br>PLOT NO. 1<br>-286E+07<br>-227E+07<br>-167E+07<br>-167E+07<br>-475600<br>121622<br>718843<br>-132E+07<br>-251E+07 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--|

| - 2465-108<br>- 1825-108<br>- 117E+08<br>- 528E+07<br>- 117E+07 |       |      |
|-----------------------------------------------------------------|-------|------|
| Parameter                                                       | Value | U.M. |
| σ <sub>x_max</sub>                                              | -216  | MPa  |
| σ <sub>Y_MAX</sub>                                              | -56.9 | MPa  |

Block-coil stress values are below the maximum allowable limits

2.86

### Assumptions considered for coil modeling:

- Homogenized coils surrounded by an infinitely rigid structure in frictionless contact to avoid peak stress and intercept forces
- Maximum allowable stresses:
  - || tape face:  $\sigma_{max} = -100$  MPa
  - $\perp$  tape face:  $\sigma_{max}$  = 400 MPa

#### Non-uniform current distribution due to magnetization





| Parameter              | Value | U.M. |
|------------------------|-------|------|
| $\sigma_{r_{MAX}}$     | -194  | MPa  |
| $\sigma_{	heta_{MAX}}$ | -252  | MPa  |

<sup>1</sup>Barth, Christian & Mondonico, G & Senatore, C. (2015). Superconductor Science and Technology. 28. 045011. DOI: 10.1088/0953-2048/28/4/045011.

MPa

σ<sub>XY\_MAX</sub>



### **COST ESTIMATION CHECK**



## Same Cost Model previously used for the evaluation of entire collider magnet total cost

- Modified cost model presented at IMCC (see B. Caiffi <u>talk</u>) still to be implemented in the evaluation
- Compatible results with analytical prediction and scaling
- Costheta magnet evaluation to be updated after stress management optimization

|                    | •     |      |
|--------------------|-------|------|
| Material           | Value | U.M. |
| ReBCO tape         | 2500  | €/kg |
| Stainless<br>Steel | 10    | €/kg |
| Iron               | 8     | €/kg |
| Labor              | 20000 | €/m  |

Cost Assumption (C)

#### Density Assumption ( $\rho$ )

| Material        | Value | U.M.              |
|-----------------|-------|-------------------|
| ReBCO tape      | 8000  | kg/m³             |
| Stainless Steel | 7800  | kg/m³             |
| Iron            | 7800  | kg/m <sup>3</sup> |

Cost Estimation:  $C = (\sum A_n \cdot C_n \cdot \rho_n) + C_{LABOR}$  ( $(\in/m)$ )

| Block Coil Design |       |      |
|-------------------|-------|------|
| Material          | Value | U.M. |
| ReBCO tape        | 281   | k€/m |
| Stainless Steel   | 17    | k€/m |
| Iron              | 43    | k€/m |
| Labor             | 20    | k€/m |
| Total Cost        | 361   | k€/m |

| Costheta Design |       |      |
|-----------------|-------|------|
| Material        | Value | U.M. |
| REBCO tape      | 217   | k€/m |
| Stainless Steel | 17    | k€/m |
| Iron            | 43    | k€/m |
| Labor           | 20    | k€/m |
| Total Cost      | 297   | k€/m |

S. Mariotto - Dipole Magnet Design @ IMCC 2025





### Recap from H. Prin presentation @ mmWG 13<sup>th</sup> June 2024:

Collection of superconducting magnet connection between two different cryostat and within the same cryostat interface.

- 1. LHC MB (NbTi, 1.9 K) **1200/1300 mm (LHC L<sub>d-d</sub>=1.36 m)** 
  - Coil Length Magnetic Length = 236 mm
  - CSpoolpiece corrector: 176 mm
  - Magnet End Plate/Cold mass: 226.5 mm
- 2. MQXFa/b for the HL-LHC project (Nb3Sn, 1.9 K) Q2A/Q2B L= 2090 mm
  - Coil Length Magnetic Length = 109 mm
  - CSpoolpiece corrector: NA
  - Magnet End Plate/Cold mass: 228 mm

Possible method to minimize FFML

- Compact Coil ends (difficult for HTS/200mm typical value for Nb<sub>3</sub>SN)
- Reduction of cold mass head equipment (for example with  $T_{op}$  = 20 K)





E. Todesco, "Optimizing the filling factor in high energy colliders" P. Ferracin, MQXF Design Overview - HL-LHC/LARP Review



### MUON BEAM WOBBLING



Possible implementation of horizontal field (FOR DISCUSSION)

- 1. External Steering Magnet outside of the main dipole/combined function magnet
  - Integrated strength: ±8.375 Tm
  - Easier implementation and tunability
  - Additional length between the magnet
- 2. Magnet handling with additional coil (horizontal dipolar field)
  - Already implemented in HL-LHC MCBXF (Ciemat)
    - 150 mm aperture magnet (2.1 T Vertical 2.1 T Horizontal field)
    - Main issue: TORQUE 147 kNm/m
      - EXAMPLE: 16 T vertical 0.67 T horizontal  $\rightarrow$  350 kNm/m
    - Difficult for 3 combined function magnets (HD-Q-VD)
- 3. Fixed magnet position with additional coil
  - Larger bore aperture/inner elliptical tungsten layout (horizontal thickness >vertical thickness)

REQUIREMENTS:

- $B \sim 0.67 T$  for 100 m period and  $\pm 25$  mm
- Tunable horizontal dipole field









### CONCLUSIONS



- Finite element models for large aperture high field HTS dipoles have been started and are being presently developed to address technological challenges to be solved during the R&D phase of superconducting magnet development
- Analytical/FEM models for persistent current simulation already implemented for costheta magnet layout used to address HTS dynamic effects during magnet operation and evaluate impact on field quality and losses
- Stress management design must be further studied including peak stress at conductor level
  - Block coil design more suitable for stress management configuration
  - **Costheta** magnet layout to be implemented
- Field free magnetic length > 1 m are like to be considered depending on connection scheme
- Additional horizontal field in collider magnet to be further developed
  - Separate magnet layout / nested solution













Non Collider Collaboration

## Thank you for the attention



Funded by the European Union (EU). Views and opinions expressed are however those of the author only and do not necessarily reflect those of the EU or European Research Executive Agency (REA). Neither the EU nor the REA can be held responsible for them.