Rectilinear 6D Cooling Magnet Design

S. Fabbri, L. Bottura, CERN M. Statera, INFN LASA

Alternating polarity solenoids create an oscillating field B_z in z. This field can be described by harmonic components, $B_z = B_1 \sin\left(\frac{2\pi z}{L_{cell}}\right) + B_2 \sin\left(\frac{4\pi z}{L_{cell}}\right) + B_3 \sin\left(\frac{6\pi z}{L_{cell}}\right) + \dots$

9 T on-axis should be easy, right?

Review

... how close together are the opposite polarity solenoids?

...what is the **bore radius**?

...what is the **cell length**?

4

Review Baseline Reference (MAP) Evaluation

~3000 solenoids per ~1 km long cooling chain | **18 unique solenoid types On axis field** 2.4 T to 13.6 T | **Bore size** from 90 mm to 1.5 m

Un-optimized from engineering perspective

- Large average hoop stresses (peak 340 MPa)
- Tensile radial stresses (peak 20 MPa)
- Large stored magnetic energies (up to 45 MJ in one coil)
- Largest contributor to cost of magnets & powering in 3 TeV machine

Design Considerations

- The solenoids should be designed to within reasonable engineering limits.
 What are the limits on stresses, forces, magnetic energy density, spacing of HTS solenoids in our size range?
- 2. Solenoid features (stress, energy, ..) vary depending if they are operated stand-alone, in a single cell, or in a lattice.
 - \rightarrow
- Should solenoids be designed based on the worst-case scenario or more optimistically with advanced protection mechanisms?
- 3. The most efficient/cost-effective (also operating costs) SC material should be used.
 - Can lower field cells be designed with LTS, or focus more on uniformity using HTS throughout (cryogenic considerations)?

Timeline

Low J_E

2023	US-MAP Magnet Analysis	Magnets were designed to fit desired on-axis field. Only constraint: the peak field of the solenoid does not exceed the limits of Nb_3Sn .	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Jan. 2024 (New Optics Configuration & Analysis	Magnet initial design to fit desired on-axis field by optics. Magnets not constrained, highly unrealistic .	Analysis shows excessive: ■ Hoop stresses (> 800 MPa)
	20 15 10 5 5 5 5 5 5 5 5 5 5 5 5 5	Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9 Stage 10 100 101 100 27.0 21.0 20.0 20.4 25.0 20.4 25.0 20.4 25.0 20.4 25.0 20.4 25.0 20.4 25.0 20.4 25.0 20.4 25.0 20.4 25.0 20.4 25.0 20.4 25.0 <td< td=""><td> Radial stresses (>80 MPa) Stored energies (>300 MJ/m3) Peak fields in conductor (>30 T) Large forces, </td></td<>	 Radial stresses (>80 MPa) Stored energies (>300 MJ/m3) Peak fields in conductor (>30 T) Large forces,

Workflow 2025

Th

 ΔTh

R_i

 ΔL

 \boldsymbol{B}_{0}

 $-L \rightarrow$

Visualization tool — AB Plots

• At each radius, finely scan in *L* and *Th*

• Compute B_0 & scale by limits $\Box \sigma \propto B_0^2$

 $\Box e_m \propto B_0^2$

 \Box $J_c(B)$...

Results, US-MAP A1-A4, B1-B3

Minimum volume solutions (SiCO)

new optics analysis

Total Number of Solenoids in 1 chain: 3026 Total Length: 945 m On axis field from 2.5 T to 14.3 T (in Lattice)

Beam

Dynamics

Optimization

Initial Magnet

configuration

- 27 unique solenoid types
 - e Bore radius from 50 mm to 450 mm
 - Length from 70 mm to 600 mm
 - J_E from 32 A/mm2 to 255 A/mm2
 - Cell Length from 0.76 m to 2.2 m
 - Number of cells from 23 to 146

IMCC New Optics Version 4.0

Analysis, Op. in Lattice

(March 2025)

Minimum volume solutions Cells A1 to B2

(SiCO = Solenoid in-Cell Optimization)

CERN

MInternational UON Collider Collaboration

MuCol

21

Minimum volume solutions Cells A1 to B2

(SiCO = Solenoid in-Cell Optimization)

Operation in Lattice

CÈRN

MInternational UON Collider Collaboration

MuCol

Optimization

- A **new optics (2025)** has been produced following input spacing constraints.
- Initial analysis shows some reasonable parameters, but to be studied further (forces, spacing, radial tensile stress etc.)
- Initial **optimization** has been performed on cells A1-B2.

Next steps

- Factor in correct waveguide spacing.
- Incorporate standardization into optimization routine (for cost consideration).
- Continue implementing evolving understandings from the demonstrator design, such as quench analysis.

Thank you

Funded by the European Union (EU). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the EU or European Research Executive Agency (REA). Neither the EU nor the REA can be held responsible for them.

Progress in the Design of Magnets for a Muon Colliders, IPAC 2024 / S. Fabbri/ CERN

	nitions Geometry	Sketch Materials Phys	cs Mesh St	udy Res	ults Developer				?							
A Application Builder	Component 1	Parameters P	Geometry	Materials	Magnetic Fields •	Build Mesh	= Compute Study 1 • Add Study Study	Add Plot Group 27 • Add Plot Group • Add Predefined Plot Results	Layout							
					, in the second s		0100)									
← → ↑ ↓ ☜ "" ↓ • III •	 Settil Image C Refi 	ngs resh 🖽 Export ▾		Q GI	Graphics 역 역 였 • 표 · 나 • 또 또 또 뼈 (간 •) 월 • · 제 • 한 · 한 111 다 • • 한 11											
Cut Lin	ne 2D: A	Image 3			Volume: Ma Line: Magn	etic flux den	sity norm (T) Co morm (T)	ontour: r*mf.Aphi (Wb)	9							
Cut Lin	ne 2D: Preset:	Current -				(
Cut Lin	ne 2D: ne 2D: • Sce	ne				10	\sum									
Cut Lin	ne 2D:	Model (root)				110										
Cut Po	int 20 Þ	Component 1 (comp1)														
Cut Po	int 2E 🖌	Results					1									
Cut Po	int 2D	Magnetic 3D														
Cut Lin	ne 2D:	Magnetic 1D						-								
Cut Lin	ne 2D:	Mechanics 2D														
Cut Lin	ne 2D:	Mechanics 1D														
Cut Pla	ane 1	3D Plot Group 27					2) \ \									
Views 8.85 Derived Value	hung					110	/									
Fill Tables	ides					1										
4 🛅 3D Plot Gr	oup 2 Selecter	t source:														
4 📄 Volum	e1	3D Plot Group 27														
	ter 1															
- Filt	View:	From plot group	• 13		×											
- Filt	ter 1 T Ima	ige														
 ♥ Filt ⊗ Conto ▲ □ Line 1 ♥ Filt 	• 11118	-			y											
- → Filt		m extents														
 Filt Oconto ▲ Export ▲ Export ★ Filt 	Data Zoo	m extents				Messages × Progress Log Peak Stresses Coil 1 ×										
-⊸ Fill ③ Conto ▲ ⊡ Line 1 -⊸ Fill ▲ Export Field E ► Image	Data Zoo xport Z Anti Expor	m extents ialiasing		Me	essages × Progress	Log Peak Str	esses Coil 1 👋		* 1							
→ Fill → Conto → Line 1 → Fill → Export ↓ Export ↓ Field E ↓ Image	Data Zoo xport Anti Export 3 Out	m extents ialiasing tput		Me	essages × Progress	Log Peak Str	esses Coil 1 👋		÷ 1							

Set-up

- Homogenous material
- Fine mesh
- Rollers placed to oppose net axial force

Analysis

- Peak field in coils
- Stored magnetic energy
- Stresses
- Forces
- ... inductance, stray fields, ...

Beam Dynamics Optimization

Total Number of Solenoids in 1 chain: 3030 Total Length: 849 m On axis field from 2.6 T to 17.9 T (in Lattice)

- 26 unique solenoid types
 - Bore radius from 25 mm to 400 mm
 - Length from 75 mm to 287 mm
 - J_E from **58 A/mm2** to **327 A/mm2**
 - Cell Length from 0.63 m to 2.3 m
 - Number of cells from 49 to 124

Spacing issues

-20

A1-1 A2-1 A3-1 A4-1 B1-1 B2-1 B3-1 B4-1 B4-2 B5-1 B5-2 B6-1 B6-2 B6-3 B7-1 B7-2 B7-3 B8-1 B8-2 B8-3 B9-1 B9-2 B9-3 B10-1B10-2B10-3

IMCC New Optics Version 3.0

(August 2024)

	A1-1	A2-1	A3-1	A4-1	B1-1	B2-1	B3-1	B4-1	B4-2	B5-1	B5-2	B6-1	B6-2	B6-3	B7-1	B7-2	B7-3	B8-1	B8-2	B8-3	B9-1	B9-2	B9-3	B10-1	B10-2	B10-3
Bore Radius	400	400	200	190	400	400	400	175	410	110	230	80	160	220	50	130	220	30	100	210	25	85	210	25	85	195
Thickness	150	150	125	125	200	200	200	200	240	80	170	70	50	100	70	80	100	60	100	105	50	100	105	50	100	105
Length	287	233	245	217	146	194	277	91	277	70	274	105	81	196	89	84	213	87	78	223	96	100	225	75	89	168
J [A/mm2]	57.6	149.5	131.5	193.2	96.9	102.1	127.9	88.5	153.6	179.6	154.0	214.4	211.5	212.7	183.3	153.9	210.3	193.7	202.1	212.8	256.4	88.5	204.9	326.8	146.1	207.8
Cell Length	1.8	1.2	0.8	0.7	2.3	1.8	1.4	1.100		0.800		0.700			0.700			0.650			0.650			0.630		
N Cells	58	89	81	124	24	34	54	61		55		55			51			69			53			49		

28 -