A Charge-Agnostic Design for Initial 6D Muon Cooling

Caroline Riggall¹, Larry Lee¹, Katsuya Yonehara², Dave Neuffer², Diktys Stratakis² ¹ University of Tennessee; ² Fermi National Accelerator Laboratory IMCC and MuCol Annual Meeting 2025

Induce dispersion via dipole field

Pass higher-momentum particles through more absorber material

Ionization Cooling

This cooling scheme is charge-dependent

\implies Need for *two* cooling channels (one for μ^+ , one for μ^-)

Introducing: HFOFO

Yuri Alexahin's concept from the MAP era

Charge-agnostic dispersion generation \implies simultaneous cooling of both signs

HFOFO would enable a *single* initial cooling channel!

Presented here is the Helical FOFO Snake (**HFOFO**) design:

Introducing: HFOFO

Negative solenoids

Positive solenoids

6 solenoids = 1 period (4.2 m)

Full channel = 30 periods

LiH absorbers

RF chambers

6

Basic Principles

Alternating solenoid focusing

Simultaneous focusing of both signs of muon

Periodic rotating dipole fields

Charge-agnostic dispersion generation

HFOFO operates on 3 basic principles:

Resonant dispersion generation

Large localized path lengthening

Solenoid Focusing

- Alternating-polarity solenoids for focusing
 - This is called a FOFO lattice
 - Does not depend on muon sign
- Solenoids are periodically inclined to create rotating dipole field

 μ^+ and μ^- have same orbit but with a half-period longitudinal offset

Solenoid Focusing

μ^+ and μ^- orbits along single period (animation)

Lattice Periodicity

Groups of 3 focusing units with same solenoid and absorber orientations repeated *twice per period* to treat both signs

Traditional schemes:

Solenoid tilting along one axis only

Generate upward dipole field

 \implies Charge-specific dispersion

HFOFO:

Solenoid tilting along two axes, with twice per period repetition of rotations

Generate rotating dipole field

 \implies Dispersion independent of sign

 $\alpha_c = \cdot$

Having near-resonance conditions allows for large *dispersion* – ideal for cooling!

Beta tune near resonance \implies momentum compaction is positive:

$$\frac{\Delta L/L}{\Delta p/p} > 0$$

. Higher-momentum particles travel longer paths

Beta Function

Wedge absorbers placed at *minima of beta function* (between solenoids)

Y. Alexahin 2015 <u>arxiv:1806.07517</u>

RF Cavities

Cooling degrades longitudinal momentum

 \implies Use RF cavities to restore energy

 $f_{RF} = 325 \text{ MHz}$

GH₂ enables higher RF gradient and contributes to cooling

Momentum Evolution

- Average front-end momentum is ~250 MeV/c
- Momentum is degraded along channel to ~200 MeV/c
 - Ideal for ionization cooling
- Achieved by reducing solenoid current and adjusting RF phase with z

15

Y. Alexahin 2015 arxiv:1806.07517

Normal mode emittances and beam intensity along channel

Factor of **112.8** total emittance reduction! 36.4 transverse, 3.1 longitudinal

65% transmission rate

Y. Alexahin 2015 <u>arxiv:1806.07517</u>

What is Next?

Yuri demonstrated ~two orders o both μ^+ and μ^- , w Yet since the MAP project, there

- Yuri demonstrated ~*two orders of magnitude* in emittance reduction for both μ^+ and μ^- , without significant losses
 - Yet since the MAP project, there has been minimal work on HFOFO
 - ... until now!

Yuri's design is highly nontrivial, so we are rebuilding HFOFO from the basics

Goal: study simplified channel \implies approximate Hamiltonian

Study beam optics in constant-momentum channel

Our Work

Our Work

Dispersion along full simplified channel (μ^+)

Our Work

Dispersion along isolated region of simplified channel (μ^+)

Yuri's design is highly nontrivial, so we are rebuilding HFOFO from the basics

Goal: study simplified channel \implies approximate Hamiltonian

Optimization Ideas

- Reduce length of lattice elements along channel and increase solenoid current to preserve transverse beta tune
- Increase betatron phase advance for each focusing unit (nominally 74°) to reduce beta function at minima
- Other ideas?

Thank You

Fermilab

RESEARCH CORPORATION O

Supplementary

Trajectory and dispersion in transverse plane

Initial and final total momentum distributions (μ^+)

Y. Alexahin 2015 <u>arxiv:1806.07517</u>

	N _{total}		ϵ_{6D} (cm ³)		
Initial	11755	1.19	2.19	2.38	6.22
Final	5378	0.19	0.36	0.76	0.051

	N _{total}	ϵ_{mN} (cm)			€ _{6D} (cm³)
Initial	12396	1.22	2.10	2.19	5.59
Final	5896	0.16	0.46	0.72	0.051

 μ^+

μ

