MAIA 10 TeV Detector Concept

Kiley Kennedy, Princeton University On behalf of many people

IMCC Annual Meeting, 14 May 2025

Overview

- Introduction and motivation
- Simulation of beam induced background (BIB)
- Tracker design and performance
- Calorimeter design and performance
- Conclusions & Outlook

Maia
Article Talk
From Wikipedia, the free encyclopedia
For other uses, see Maia (disambiguation).
Maia (/ <u>mer.e</u> , <u>mar.e</u> /; Ancient Greek: Μαîα; also spelled Maie , Μαίη; Latin: <i>Maia</i>), ^[1] in ancient Greek religion and mythology, is one of the Pleiades
Family [edit]
Maia is the daughter of Atlas ^{[3][4]} and Pleione the Oceanid, and is the oldest of the seven Pleiades. ^[5]

Results today include contributions from many, including:

Charles Bell, Daniele Calzolari, Christian Carli, Sarah Demers, Karri Folan Di Petrillo, Micah Hillman, Tova R. Holmes, Sergo Jindariani, Ka Hei Martin Kwok, Anton Lechner, Lawrence Lee, Thomas Madlener, Ethan Martinez, Federico Meloni, Isobel Ojalvo, Priscilla Pani, Gregory Penn, Rose Powers, Benjamin Rosser, Leo Rozanov, Kyriacos Skoufaris, Elise Sledge, Alexander Tuna, Junjia Zhang

K. Kennedy

Introduction + Motivation

- Extensive detector studies for 1.5 and 3 TeV muon colliders
 - Critical to determine if (and how) 10 TeV detector concepts can handle high BIB
- MAIA designed for 10 TeV, based on 3 TeV design
 - Updated to updated nozzle design, deeper calorimeters, move solenoid inside the calorimeters

BIB Simulation, Assumptions, and Mitigation

- Latest results with EU24 (v0.8) accelerator lattice
 - Significantly higher BIB fluxes than with v0.4 lattice
- Assume dominant BIB from muon decays near the interaction region
 - Only consider muon decays in the final focusing region
 - Ignore beam halo and incoherent pair-production (for now)
- Simulated in FLUKA + overlaid with hard collision processes

BIB Simulation, Assumptions, and Mitigation

- Latest results with EU24 (v0.8) accelerator lattice
 - Significantly higher BIB fluxes than with v0.4 lattice
- Assume dominant BIB from muon decays near the interaction region
 - Only consider muon decays in the final focusing region
 - Ignore beam halo and incoherent pair-production (for now)
- Simulated in FLUKA + overlaid with hard collision processes

- Nozzles in the forward regions
 - INTERMET: mitigate EM
 - Borated polyethylene: neutron capture

K. Kennedy

Solenoid

Move solenoid inside calorimeters due to increased B-field requirements

- MAIA increases solenoid field to 5 T (up from 3.57 T for 3 TeV detector)
- Adds approximately to $\sim 4X_0$ upstream of the calorimeter

Higher solenoid B-field significantly reduces fluence and occupancy

• BIB shielding for calorimeters, although this also degrades resolutions of hard scatter processes

Tracker Design

Major update w.r.t. 3 TeV design: reduction in number of doublet layers, which produce track ("stubs")

• Removed all but one doublet layer in vertex detector

Tracking based on ACTS library led to significant improvements → many doublet layers redundant

	Vertex Detector	Inner Tracker	Outer Tracker
Sensor type	pixels	macro-pixels	macro-pixels
Barrel Layers	4	3	3
Endcap Layers (per side)	4	7	4
Cell Size	$25\mu\mathrm{m} imes25\mu\mathrm{m}$	$50\mu\mathrm{m} imes 1\mathrm{mm}$	$50\mu\mathrm{m} imes 10\mathrm{mm}$
Sensor Thickness	$50\mu{ m m}$	$100\mu{ m m}$	$100\mu{ m m}$
Time Resolution	$30\mathrm{ps}$	$60\mathrm{ps}$	$60\mathrm{ps}$
Spatial Resolution	$5\mu\mathrm{m} imes 5\mu\mathrm{m}$	$7\mu{ m m} imes90\mu{ m m}$	$7\mu{ m m} imes90\mu{ m m}$

Tracker: BIB Occupancies

- Occupancies ~10x higher with realistic nozzle and lattice (v0.8/EU24) compared to previous versions (v0.4)
 - Highly dependent on accelerator lattice and nozzle
- Applying timing cuts significantly reduces BIB:
 - Broad time window \rightarrow [-0.5, 15] ns
 - Narrow time window \rightarrow [-3 σ_t , 5 σ_t]
- Sub-100 ps timing resolution critical to reduce hit occupancy in vertex layers

Tracking Detector Layer

MAIA Detector Concept

Track Reconstruction Performance

Use single muon gun sample to evaluate tracking performance

• Track cleaning: $p_T > 1 \text{ GeV}$, $|d_0| < 0.1 \text{ mm}$, $N_{hits} > 5$

Reconstruction efficiency with BIB excellent in the barrel; degrades in the forward region

Track Reconstruction Performance

Excellent track p_{τ} and impact parameter resolution, especially for harder tracks in the barrel

Calorimeter Design

MAIA design increases number of ECAL and HCAL layers by 25% w.r.t. 3 TeV design to accommodate for harder final states

Hadron Calorimeter Electromagnetic Calorimeter Cell type Silicon - Tungsten Iron - Scintillator Cell Size $5.1 \,\mathrm{mm} \times 5.1 \,\mathrm{mm}$ $30.0\,\mathrm{mm}\times30.0\,\mathrm{mm}$ Sensor Thickness $0.5\,\mathrm{mm}$ $3.0\,\mathrm{mm}$ Absorber Thickness $2.2\,\mathrm{mm}$ $20.0\,\mathrm{mm}$ Number of layers 50 75

- Resolution Targets:
 - ECAL energy resolution target: 10% $/\sqrt{E}$
 - HCAL energy resolution target: 35% $/\sqrt{E}$

ECAL: Impact of BIB

BIB in the ECAL mostly due to photons and neutrons

- Most BIB so soft and diffuse that it is not possible to reconstruct
- Lower layers photon-dominated, deeper layers neutron-dominated

BIB deposits up to ~6 MeV/cell

 Varies across θ and depth, with higher energies in the more forward region (due to solenoid)

Composition of BIB Across ECAL Layers

Mode of Energy per ECAL Cell

Photon Reconstruction Efficiency

 $BIB \rightarrow lots of fakes, improved algorithms needed$

Photon Reconstruction Performance

Photon energy resolution highly dependent on position in theta – excellent in the central barrel and endcap

• Worse resolution for particles most impacted by the material of the solenoid

Photon Energy Resolution vs. Theta

Photon Reconstruction Performance

Results for no BIB and truth-assisted case ~meet specification requirements in the endcap

- Truth-assisted reconstruction: all ECAL cells within ΔR cone of 0.1 around truth particle
- Best results minimal or no interaction with solenoid

Results with BIB show significantly degraded resolutions - reconstruction algorithm improvements crucial

• Roughly ~similar results across the detector, regardless of upstream solenoid material

Neutron Reconstruction Performance

Very good results for lattice v0.4, especially for high-energy neutrons in the barrel

- Significant reconstruction challenges in v0.8 (not shown) improvements to reconstruction algorithms critical
- Use neutron objects to evaluate HCAL performance

G. Penn, E. Martinez **Towards Complex Objects: Pion + Tau Reconstruction**

Ongoing investigations into more complex objects have already started to lead to significant algorithmic improvements and reveal promising results (without BIB)

Single-Prong Tau Reconstruction Efficiency

Ongoing + Future Work

- Detector optimization
 - Tracker: endcaps/forward region; doublet layer considerations
 - Solenoid material budget challenges
 - Muon spectrometer: in-air RPC centrally, forward region not yet integrated into design
- Machine-detector interface → see Rose's MDI talk tomorrow!
 - Nozzle design and interplay with collider lattice
- Software and reconstruction → see Greg's particle flow talk tomorrow
 - Integrating timing into calorimeter clustering could lead to significant BIB rejection
 - \circ Many physics objects and tools designed for CLIC and need re-tuning for $\mu\mu$ collisions/BIB
- Longer term: DAQ, R&D, technological advancements, and feasibility studies

Conclusions + Outlook

• Conclusions

- MAIA demonstrates excellent tracking performance, even with BIB
- More work needed to further refine and optimize calorimeter-based results

Outlook

- Many ongoing and future studies to continue to improve the MAIA detector concept and reconstruction algorithms
- Encourage those who are interested in getting involved to please reach out!

Thank You!

MAIA Detector Concept Muon Collider Simulation

Neutron Detection, E = 73 GeV

BIB Simulation | Workflow

→ Using updated <u>FLUKA</u> 10 TeV BIB

Kinematics look very similar to 3 TeV; but MDI, nozzle optimization extremely important (<u>D. Calzolari</u>)

→ BIB simulation and overlay (<u>N. Bartosik</u>)

• Simulating the BIB contributions in FLUKA is computationally expensive, so employ overlay strategy:

F. Meloni

MAIA: Summary

Subsystem	Region	R dimensions [cm]	$ \mathbf{Z} $ dimensions [cm]	Material
Vertex Detector	Barrel	3.0 - 10.4	65.0	Si
	Endcap	2.5 - 11.2	8.0 - 28.2	Si
Inner Tracker	Barrel	12.7 - 55.4	48.2 - 69.2	Si
	Endcap	40.5 - 55.5	52.4 - 219.0	Si
Outer Tracker	Barrel	81.9 - 148.6	124.9	Si
	Endcap	61.8 - 143.0	131.0 - 219.0	Si
Solenoid	Barrel	150.0 - 185.7	230.7	Al
ECAL	Barrel	185.7 - 212.5	230.7	W + Si
	Endcap	31.0 - 212.5	230.7 - 257.5	W + Si
HCAL	Barrel	212.5 - 411.3	257.5	Fe + PS
	Endcap	30.7 - 411.3	257.5 - 456.2	Fe + PS
Muon Detector	Barrel	415.0 - 715.0	456.5	Air + RPC
	Endcap	44.6 - 715.0	456.5 - 602.5	$\left \operatorname{Air} + \operatorname{RPC} \right $

Table 1: Boundaries and materials of individual subdetectors.

K. Kennedy

MAIA 10 TeV Detector Concept | 14 May 2025

BIB: v0.4 vs v0.8 (EU24) Lattice

v0.4 Lattice

v0.8 Lattice

Track Reconstruction

ECAL Calibration

Neutron Reconstruction

v0.4 Lattice

V0.8 (EU24) Lattice

0.00

200

400

600

800

True Neutron Energy [GeV]

1000

Re

gy

Muon System Results

- Muon detector should be the least affected by beam induced background:
 - In general, BIB absorbed by solenoid and by calorimeters, so not a problem here.
 - Potentially some issues depending on nozzle geometry in far forward region.
- Initial look at muon system occupancy: higher in endcap layers, but not an issue.

Radiation Damage

Radiation at 10 TeV comparable to HL-LHC and previous 3 TeV muon collider studies; much lower • than FCC-hh (1018 1 MeV-neg/cm2) (2209.01318, 2105.09116)

1 MeV neutron equivalent in Silicon $[n \text{ cm}^{-2} \text{ y}^{-1}]$

K. Kennedy

Nozzle Configuration Optimization Studies

Simulate BIB fluence with nozzle tip at different distances

- → Nozzle tip has a strong influence on the electron fluences
- → Require nozzle distance > 4 cm from origin to reduce EM showers
- → Studies ongoing!

MAIA 10 TeV Detector Concept | 14 May 2025

D. Calzolari