Luminosity Determinations in Muon Colliders

IMCC and MuCol 2025 Professor Chris Palmer (UMD) May 14th, 2025

Overview

Previous strategies and results at e⁺e⁻ and hadron colliders.

Luminosity measurement proposals for muon colliders.

LHC Proton-Proton Precision

- •The precision in luminosity measurements at the LHC has tended to be in the 1-3% range, with a couple of subpercent measurements.
- These measurements have two main areas of uncertainty:
 - Calibration (via van der Meer scans)
 - Luminometer stability
- CMS's current best measurement (2016, 1.2%)
 - Will go through a few details as an example.

CMS luminometers

- Primary luminometer: pixel detector using cluster counting (PCC)
- Secondary in 2016: Hadron forward calorimeter using towers above threshold counting: occupancy method (HFOC)

IMCC and MuCol Annual Meeting 2025

Chris Palmer - May 14th, 2025

arXiv:2104.01927

LUM-17-003

Pixel Cluster Counting

- The average number of charged particles is proportional to the number of proton-proton collisions.
- Since reconstruction is complex, the strategy in CMS is to count the clusters in silicon layers rather than number of reconstructed tracks.
- This method is very effective at low pileup as well, so if the number of tracks/clusters per collision is large enough, then it could work for online luminosity.
- For the moment this is an offline analysis in CMS, but there are HL-LHC luminometers (e.g., outer tracker and TPEX) with dedicated FPGA-based backends that will histogram counters per bunch crossing.

Pixel Cluster Counting

- There are a couple of ways to get clusters that aren't from collisions:
 - 1) tails of earlier, real clusters are visible (electronics spillover): just the next 1-3 bunch crossing slots
 - 2) detector material is activated and radioactive decays near the pixel detector creates new charged particles (afterglow): effect lasts on the order of the half-life of activated material.
- BIB can also be modeled and corrected in a similar way.

HF Lumi

- CMS's Hadronic Forward (HF) detector is an iron absorber with quartz fibers.
- An FPGA-based backend is used to store the histograms per bunch crossing.
 - They are readout every 1.45 seconds.
- The same strategy as in PCC is used for afterglow corrections.
- The corrections are much larger (~20%), but the size of the correction is different from the size of the uncertainty on the correction (<0.5%).
 - With a calorimeter-based luminosity measurement BIB could be handled with a similar approach.

3440

3460

3480

3500

3520

3540 BCID

IMCC and MuCol Annual Meeting 2025

Chris Palmer - May 14th, 2025

7

Absolute calibration: σ_{vis} from vdM method

Effects to consider:

 \bullet

- Bunch intensity (N1, N2)
- Length-scale & orbit movements affecting separation (Σ_x, Σ_y)
- Background affecting R₀
- Beam-beam interactions
- IMCC and MuCol Annual Meeting 2025

- Rate as a function of separation provides beam overlap widths in x and y
 - Visible cross-section assuming transverse factorization:

$$\sigma_{vis} = \frac{1}{\mathscr{L}_0} R_0 = \frac{2\pi \Sigma_x \Sigma_y R_0}{N_1 N_2 f_{LHC}} \quad \text{arXiv:2104.019} \\ \text{LUM-17-003}$$

Chris Palmer - May 14th, 2025

27

STIVERSITL

CMS 2016 vdM scan program

- Traditional vdM scan: beams move in 25 steps of 30 s each to scan separation range of ±60
- Beam-imaging scan (BI): one beam fixed, other moves in 19 steps of 40 s each over $\pm 4.5\sigma_{\text{beam}}$
- Constant-separation **length-scale scan** (LSC): 2 beams separated by $1\sigma_{beam}$ move together in $1\sigma_{beam}$ steps from $-2\sigma_{beam}$ to $+2\sigma_{beam}$ average position and then with $-1\sigma_{beam}$ separation back in total of 5+5 steps of 60 s each

process would work.

• Several processes would effectively decrease the statistical luminosity.

arXiv:2104.01927

LUM-17-003

Final 2016 Results $\int \mathscr{L}dt = \frac{1}{\sigma_{\text{vis}}} \int Rdt$

- •The reanalysis of this data halted the precision (2.5%->1.2%).
 - Released in 2021.
 - A lengthy saga about beam-beam effects distorting the beams' shapes delayed the results about a year.
- Some of these approaches could be useful if an alternative to vdM calibration is used for arbitrary observables.
 - Cross calibration to a very precisely known process would work.

Source	2015 [%]	2016 [%]	Corr
Normalization uncertainty			
Bunch population			
Ghost and satellite charge	0.1	0.1	Yes
Beam current normalization	0.2	0.2	Yes
Beam position monitoring			
Orbit drift	0.2	0.1	No
Residual differences	0.8	0.5	Yes
Beam overlap description			
Beam-beam effects	0.5	0.5	Yes
Length scale calibration	0.2	0.3	Yes
Transverse factorizability	0.5	0.5	Yes
Result consistency			
Other variations in $\sigma_{ m vis}$	0.5	0.2	No
Integration uncertainty			
<i>Out-of-time pileup corrections</i>			
Type 1 corrections	0.3	0.3	Yes
Type 2 corrections	0.1	0.3	Yes
Detector performance			
Cross-detector stability	0.6	0.5	No
Linearity	0.5	0.3	Yes
Data acquisition			
CMS deadtime	0.5	< 0.1	No
Total normalization uncertainty	1.2	1.0	—
Total integration uncertainty	1.0	0.7	—
Total uncertainty	1.6	1.2	

.0%

LEP Precision

Small angle Bhabha scattering is a purely QED process, can be calculated with high precision.
All of the LEP experiments were able to achieve less than per mille level (<0.1%) precision.

• E.g. L3 published 0.08% (0.05%) on 1993 (1994) datasets.

Fig. 39. e^{\pm} energy distribution for all Monte Carlo Bhabha events. The initial-state radiation and final-state radiation events are indicated separately.

• Very forward! 32-54 mrad selection.

• One event

• Detailed analysis

IMCC and MuCol Annual Meeting 2025

Chris Palmer - May 14th, 2025 https://doi.org/10.1016/S0168-9002(96)00734-6 11

Number of Event

With Great Precision comes Great Responsibility

- Beam-beam effects can be very subtle. One published in 2020 resolved a 20-year 2σ tension in number of neutrino flavors.
- As the beams pass the outgoing electron/positron trajectories are altered by the magnetic field created by the beam.

 $N_{\nu} = 2.9840 \pm 0.0082$

$$N_{\nu} = 2.9919 \pm 0.0081$$

IMCC and MuCol Annual Meeting 2025

Chris Palmer - May 14th, 2025

Ideas for FCCee

• Bhabha has been the expected primary luminosity measurement up to now, but photon pair production from annihilation may be more precise.

 Both can potentially reach 10^{-4} in precision.

Luminosity Measurement Introduction

Two predominantly QED processes considered for e^+e^- collider abs. luminosity measurements at the 10⁻⁴ level (target especially for Z running for improving N_{ν}). Both can be under very good theoretical control.

O Bhabha Scattering, $e^+e^- \rightarrow e^+e^-$. Used at LEP/SLC with small-angle Si/W-based calorimeters to restrict to the pure t-channel contribution. Current ILC and FCC-ee LumiCal designs follow this approach. $d\sigma/d\theta \sim 1/\theta^3$. Prone to systematics from knowledge of $\theta_{\rm min}$ and EMD bias.

2 Pair Annihilation into Photons, $e^+e^- \rightarrow \gamma\gamma$. A pure QED process.

 $d\sigma/d\theta \sim 1/\theta$. Less sensitive to θ_{\min} systematic. No θ_{\max} . Lower event rate. Integrated cross-sections are approximately:

 $\sigma_{\rm e^+e^-} = 1040 \text{ nb} (\theta_{\rm min}^{-2} - \theta_{\rm max}^{-2}) / s[{\rm GeV}^2]$. $\sigma_{\gamma\gamma}(\theta > \theta_{\min}) = 130 \text{ nb } (1 - P_{e^-}P_{e^+}) \left(\log_e(\frac{1 + \cos \theta_{\min}}{1 - \cos \theta_{\min}}) - \cos \theta_{\min}) / s[\text{GeV}^2] \right)$ For $\theta_{\min} = 31.3 \text{ mrad}$ and $\theta_{\max} = 51.6 \text{ mrad}$ (OPAL LEP1), the cross-sections are **81 nb** (Bhabhas) and **115 pb** ($\gamma\gamma$ unpolarized) at $\sqrt{s} = 91.2$ GeV.

My Take

- Use Bhabhas for relative luminosity (especially for polarized beams).
- $e^+e^- \rightarrow \gamma\gamma$ can reach 10^{-4} statistical (at Z) with 1 ab⁻¹ and $\theta_{\min} = 1.8^{\circ}$.
- Precision absolute lumi. is experimentally easier with $\gamma\gamma$ cf Bhabhas.

3 / 25 Graham Wilson (Univ. of Kansas) US e^+e^- Higgs Factory Workshop, FNAL+ANI https://indico.fnal.gov/event/67484/contributions/312562/attachments/187210/258120/Fermilab-Apr2025 V2.pdf Chris Palmer - May 14th, 2025

High angle µ-Bhabha

 High rates of beam-induced backgrounds require shielding nozzles near the interaction point.

• This reduces the angle available for LEP-like measurements.

IMCC and MuCol Annual Meeting 2025

Chris Palmer - May 14th, 2025

<u>10.22323/1.397.0341</u> 14

High angle µ-Bhabha

- Fortunately, the cross section with $\theta > 15^{\circ}$ is large enough for sufficient number of events to remain for a measurement.
- From the Padua/INFN study, the statistic precision would be around 0.2% with year's data.

Chris Palmer - May 14th, 2025

Conclusions

Large angle μ-Bhabha luminosity uncertainties:

- Uncertainty in $heta_{\min}$ in estimation in the theory cross section
- Statistical uncertainty in smaller datasets
- Other theory uncertainties? (NNLO precision is already at per mille.)
- Uncertainty on beam-beam effects
- Potential alternatives and/or additional measurements
 - Di-photon final states (similar to μ -Bhabha, with lower cross section)
 - Track/pixel counting or calorimeter sums (a la LHC)