

MInternational UON Collider Collaboration

Introduction and Timeline

D. Schulte On behalf of the International Muon Collider Collaboration

Funded by the European Union (EU). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the EU or European Research Executive Agency (REA). Neither the EU nor the REA can be held responsible for them. Muon Collider, Annual Meeting, DESY, May 2025

IMCC Annual Meeting, May, 2025

ESPPU

Collaboration produced ESPPU input:

- Short, ten-page report (10p)
- Addendum to answers specific questions from ESPPU (18p)
- Back-up document (406p)
 - Assessment of collider status
 - R&D Plan
 - Important US contributions
 - Final polishing is ongoing, you Urgently sign up to support

		Muon Collabora
The Muon Collider Input to the European Nirategy for Particle Physics - 3026 update The International Collider Collaboration Contact persons:	Addundum (as The Mass Collidar	
Daniel Schulte ⁷ (daniel.schulte ⁴ te ern.ch) Federico Meloni ¹ (federico.meloni ¹⁰ dery.de) Chris Rogern ¹ (chris.nogers ¹⁰ stfc.ac.uk)	Autoendum to: The Nution Collider	
Abstract Muons offer a mapper opportunity to built a compact high-energy elec- Muons offer a mapped strategies of the Standard Model and suppo- alleled reach bayout it. It will be a paradigm-shifting tool for particle physics representing the first collider to comhine the high-energy reach of	Terminet Princes Annue Constant's Constructions Constant (French, Andrecht, Constant), Dates (Schultz, (abstract, Andrecht, Constant), Prediction Schultz, (abstract, Constant), Calver, Response (colors.congret) (Glocas.ab)	The Muton Collider Supplementary report to the European Strategy for Particle Physics - 2026 update The International Muco Collider Collaboration
a proton collider and the high precision of an electron-position collider, the observation of the high precision of an electron-position of the high precision of the electron of the high the material cost steps in the exploration of fundamental physics after the HL-LHC and a startard complexents in a future low-energy Higgs hereicy. Solve, the higher steps of the high energy community. The last Composed Starting and the precision of the high energy community. The higher composed Starting and the higher steps of the high energy community. The higher composed Starting and the high energy compared to the high energy comparison of the high energy comparison o	Alteriat Mones offer a unique opportunity to build a compact high-energy elec- troweak collider at the 10 TeV scale. A Mone Collider enables direct access to the underlying unique first start of material Model and suppo- playies representing the first collider to combine the high-energy reach of a product collider and the high precision of an electros-positron collider, which is high precision of an electros-positron collider, in the start of the start of the start of the start of the depletion of the first start of the start of the start of the comparison of first start of the start of the start of the comparison of the first start of the start of the start of the comparison of the high-energy remonstration.	The most up-to-date version of this document can be found at the following link: Lttps://webms.cern.ch/document/3284602/1 Abtract Monor offer a using exponently to build a compact high-energy dectoweak collider at the 10°V valie. A Monor Collider analysis direct acres to the us- derive simplicity of 65 scalad bodie for adjournalist rank browsit. B.
	The has Baropone Strategy for Farticlic Physics Update and later the Particle Physics Project Protostration Result in the Stropperd a study control of the Stropperd Strategy and the Stropperd Strategy Collider Colliderations. In this document, we direct address the questions listed in the guide- lians for impacts for the large-scale projects by the European Strategy Secretaria.	liter to combine the high-energy reach of a proton collider and the high preci- tion of an electron portion (affect, yielding a spiral posterial i application) generate than the sum of its individual pract, a high-energy masses collider is the matural sense step in the electronic of findament polycics after for HL- LFC and a natural completence to a function-energy Higgs intersey. Such a facility world application where the one-energy Higgs interse Collider, respirate findament of the step of the step of the step of the collider, respirate the step of the step of the facility set.
¹ Oparindin Empirican yao U. Khothan Shakhari (KEN), Gone, Kolimbata Donashi Balkawa Kakawana (KEV, Lange Grang) ¹ STIC Ratefred Applyins Laborary (RAL), Record Dolard, Daine Kinghon	Construction Construction	The last Bingment Strengy for Parkick Physics (Tybes and last the Parkick Physics Physics Physics Index I and I an
	"STFC Ratherfoot Appleon Laboratory (IAAL), Mewell Oxford, Daniel Knapleon	

R&D Progress

 \bigcirc

Design of many collider areas has progressed

- Lattice designs
- Technologies
- Detectors and MDI
- Demonstrator scope and design
- Cost and power consumption scale

D. Schulte Muon Collider, Annual Meeting, DESY, May 2025

		CERN	CERN	Green Field
	Unit	3.2 TeV	7.6 TeV	10 TeV
Proton Driver	MW	16.70	16.70	16.70
6D Cooling	MW	11.76	11.76	11.76
RLAs	MW	10.77	10.77	10.77
RCSs	MW	44.19	108.93	124.68
Collider	MW	10.00	4.10	4.10
General Cooling and Ventilation	MW	20.00	20.00	20.00
Total Power consumption	MW	113.42	172.26	188.01

the second second

Site Specific Designs

Started studies for concrete site at CERN and Fermilab

- At CERN re-use SPS and LHC and construct facility on CERN land
- Neutrino flux appears solvable
- Adjusted parameters (3.2 and 7.6 TeV)
- Stage with one tunnel or two different tunnels
 - Use of different technologies

CERN-specific muon collider parameters									
Parameter	Symbol	unit	Scen	ario 1	Scena	ario 2			
			Stage 1	Stage 2	Stage 1	Stage 2			
Centre-of-mass energy	$E_{ m cm}$	TeV	3.2	7.6	3.2	7.6			
Target integrated luminosity	$\int \mathcal{L}_{ ext{target}}$	ab^{-1}	1	10	1	10			
Estimated luminosity	$\mathcal{L}_{ ext{estimated}}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.9	7.9	2.0	10.1			
Collider circumference	$C_{ m coll}$	$\rm km$	11	11	4.8	8.7			
Collider arc peak field	$B_{ m arc}$	Т	4.8	11	11	14			
Collider dipole technology			NbTi	Nb ₃ Sn	Nb_3Sn	HTS			
				or HTS					

Goal is to be able to commit to a muon collider in 2036 to enable collider by 2050

- Considering the timeline drivers:
 - Magnet technologies: this excludes high-field HTS dipoles
 - Muon cooling technologies
 - Start-to-end design
 - Detector optimization

Ramping up of programme to rapidly gain confidence and balance risk vs R&D cost

Detector R&D and optimization

Other technologies

- RF technologies
- Cooling technology

D. Schulte Muon Collider, LDG Review, February 2025

R&D Deliverables and Resources

Technolo	ogies I	Delivera	bles				Ke	y para	meters	and go	als				Munternationa UON Collide Collaboratio
					Magn	ets									
Target so	rget solenoid Develop conductor, winding and magnet technology				t 1 n len	n inner gth, 20	/ 2.3 m T at 20	outer o K	diamete	ers, 1.4 m	Technologies	Deliverables Magnets Develop conductor, winding and magnet	Key parameters and goals		
Split 6D solenoid	t 6D cooling Demonstration of solenoid with cell integration					51	$0 \mathrm{mm} \mathbf{b}$	ore, gap	$0.200\mathrm{m}$	m, 7 T	at 20 K	Split 6D cooling solenoid Final cooling solenoid	technology Demonstration of solenoid with cell integration Build and test HTS prototype	length, 20 T at 20 K 510 mm bore, gap 200 mm, 7 T at 20 K 50 mm bore, 15 cm length, 40 T at 4 K	
Final coo solenoid	bling E	Build and	l test HT	'S proto	type		50	mm bo	re, 15 c	m lengt	h, 40 T	at 4 K	Fact ramping magnet system LTS collider dipole HTS RCS dipole HTS collider dipole HTS collider	Brototype magnet string and power converter Demonstrate Nb ₃ Sn collider dipole Demonstrate <u>RCS HPS uppole</u> Demonstrate HTS collider dipole Demonstrate HTS IR quadrupole	20 mm x 100 mm 1 & T 3 3 T/e 160 mm diameter, 11 T, 4.5 K, 5 m long 30 mm x 100 mm, 10 T, 20 K, 1 m long 140 mm diameter, 14 T, 20 K, 1 m long 140 mm diameter, 300T/m, 4.5 K, 1m long
	Year	Ι	II	III	IV	V	VI	VII	VIII	IX	X		quadrupole	Radiofrequency	
	Accelerator De	sign and	Technolo	gies								1	Muon cooling RF cavities	Design, build and test RF cavities	352 MHz and 704 MHz in 10 T held
	Material (MCHI	F) 1.6	3.2	4.8	6.4	9.6	10.8	12.0	12.0	12.0	12.0		Klystron prototype	Design/build with Industry 704 MHz (and later 352 MHz) klystron	$20\mathrm{MW}$ peak power, $704\mathrm{MHz}/352\mathrm{MHz}$
	FTE	47.1	60.6	75.0	85.0	100.0	120.0	150.0	174.6	177.2	185.1		RF test stands	Assess cavity breakdown rate in magnetic field	$20\text{-}32\mathrm{MV/m},~704\mathrm{MHz}\text{-}3\mathrm{GHz}$ cavities in 7–10 T
	Demonstrator											1	SCRF cavities	Design SRF cavities, FPC and HOM couplers, fast tuners, cryomodules	352 MHz, 1056 MHz, 1.3 GHz, 1 MW peak power (FPC)
	Material (MCHI FTE	F) 0.6 9.5	2.2 11.0	3.9 12.5	5.4 29.2	7.8 29.7	15.1 30.5	25.9 25.5	32.4 27.7	31.8 26.7	12.6 25.5		First 6D cooling cell 5-cell module	Muon Cooling Build and test first cooling cell Build and test first 5-cell cooling module	
	Detector				1			1	1		1		Cooling demonstrator	Design and build cooling demonstrator facility	Infrastructure to test cooling modules with muon beam
	Material (MCHI	F) 0.5	1.1	1.6	2.1	2.1	2.1	2.1	2.6	3.1	3.1		Final cooling absorber	Experimental determination of final cooling absorber limit	3×10^{12} muons, 22.5 μm emittance, 40 T field
	FTE	23.4	46.5	70.0	93.0	93.0	93.0	93.0	116.4	139.5	139.5		Neutrino flux mover	Design & Other Technol Protoxne components and tests as needed	Range to reach O(+1mradian)
	Magnets				1		1			1			system	Instrumentation component designs	Bratevine commonants and tests as needed
	Material (MCHI	F) 3.0	4.9	10.1	10.0	11.0	13.4	11.7	7.2	6.6	4.7		Instrumentation	msu unientation component designs	Protoype components and tests as needed
	FTE	23.3	28.4	36.4	40.9	44.3	47.1	46.2	37.7	36.1	29.4		Target Studies	components	0.4 MJ/pulse, 5 Hz
	TOTALS	1			<u>I</u>						1		Start-to-End Facility Design	A start-to-end model of the machine consistent with realistic performance specifications	Lattice designs of all beamlines, simu- lation codes with relevant beam physics, tuning and feedback procedures
	Material (MCHI	F) 5.7	11.4	20.3	23.9	30.6	41.4	51.7	54.2	53.5	32.4	1			
	FTE	103.3	146.5	194.0	248.1	267.0	290.6	314.8	356.3	379.4	379.6				and the second se

R&D Deliverables and Resources

Technologi	ies 1	Deliverat	oles				Ke	y para	meters	and go	als					MInternationa UON Collider Collaboration
Magnets																
Target sole	noid l	Develop c	onducto	or, windi	winding and magnet 1 m inner / 2.3 m outer diameters, 1.4 m						Techn	ologies	Deliverables Magnets	Key parameters and goals		
	t	echnolog	У				len	gth, 20	T at 20	K			Target	solenoid	Develop conductor, winding and magnet	1 m inner / 2.3 m outer diameters, 1.4 m length 20 T at 20 K
Split 6D co	oling I	Demonstr	ation of	solenoi	d with o	cell	510	$0 \mathrm{mm}b$	ore, gap	$5200\mathrm{m}$	m, 7T	at $20\mathrm{K}$	Split 6	D cooling	Demonstration of solenoid with cell	510 mm bore, gap 200 mm, 7 T at 20 K
solenoid	i	ntegratio	n										Final c	cooling	Build and test HTS prototype	$50\mathrm{mm}$ bore, $15\mathrm{cm}$ length, $40\mathrm{T}$ at $4\mathrm{K}$
F ' 1 1'	-						50	1	15	1 .	1 40 00		East ro	mping	Prototype magnet string and power	30mm x 100mm 1.8 T 3.3 T/e
Final coolii	ng I	Build and	test H1	S proto	vpe		50	mm bo	ore. $15 \mathrm{c}$	m lengt	th. 40 T	at 4 K	LTS co	et system ollider dipole	converter Demonstrate Nb ₃ Sn collider dipole	160 mm diameter, 11 T, 4.5 K, 5 m long
solenoid				Tata	1								HTS R	RCS dipole	Demonstrate RCS HTS dipole	30 mm x 100 mm, 10 T, 20 K, 1 m long
				IOLA	IS:								HTS c	ollider dipole	Demonstrate HTS collider dipole	$140\mathrm{mm}$ diameter, $14\mathrm{T},20\mathrm{K},1\mathrm{m}$ long
				_									HTS c quadru	ollider apole	Demonstrate HTS IR quadrupole	140 mm diameter, 300T/m, 4.5K, 1m long
	Year	Ι	Π	Dura	ition	10 v	ears	rs						-poie	Radiofrequency	
A	Accelerator De	sign and [Fechnolo			- /							Muon cavitie	cooling RF	Design, build and test RF cavities	$352\mathrm{MHz}$ and $704\mathrm{MHz}$ in $10\mathrm{T}$ field
Ν	Material (MCH	F) 1.6	3.2										Klystr	on prototype	Design/build with Industry 704 MHz (and later 352 MHz) klystron	$20\mathrm{MW}$ peak power, $704\mathrm{MHz}/352\mathrm{MHz}$
F	TE	47.1	60.6	Acce	lerat	or 3	00 N	ICHF	mate	erial	1800) FTFv	RF tes	t stands	Assess cavity breakdown rate in magnetic field	20-32 MV/m, 704 MHz–3 GHz cavities in 7–10 T
I	Demonstrator			/	iciut	01. 0	00 1		matt		1000	, , , , , ,	SCRF	cavities	Design SRF cavities, FPC and HOM couplers, fast tuners, cryomodules	352 MHz, 1056 MHz, 1.3 GHz, 1 MW peak power (FPC)
N	Material (MCH	F) 0.6	2.2	Dete	ector:		20 N	ICHF	mate	erial.	900) FTEV			Muon Cooling	
T	TTE	0.5	11.0							,		•••=,	First 6	D cooling cell	Build and test first cooling cell	
1		9.5	11.0	12.5	29.2	29.1	50.5	25.5	21.1	20.7	25.5		Coolin	ng	Design and build cooling demonstrator	Infrastructure to test cooling modules
1	Detector												demon	nstrator	facility	with muon beam
N	Material (MCH	F) 0.5	1.1	1.6	2.1	2.1	2.1	2.1	2.6	3.1	3.1		absorb	cooling ber	cooling absorber limit	3×10^{-6} muons, 22.5 µm emittance, 40 T field
F	TE	23.4	46.5	70.0	93.0	93.0	93.0	93.0	116.4	139.5	139.5		N	0	Design & Other Technol	ogies
	Magnets										1		system	no nux mover 1	Protoype components and tests as needed	Range to reach O(±1mradian)
	Material (MCH	E) 30	40	10.1	10.0	11.0	13.4	117	72	66	17		Beam Instrur	mentation	Instrumentation component designs	Protoype components and tests as needed
L L L L L L L L L L L L L L L L L L L		23.3	28 /	36.4	10.0	11.0	13.4	16.2	37.7	36.1	20 /		Target	Studies	Target design and test of relevant components	$0.4\mathrm{MJ/pulse},5\mathrm{Hz}$
1		25.5	20.4	50.4	40.9	44.5	47.1	40.2	51.1	50.1	29.4		Start-to	o-End Facility	A start-to-end model of the machine	Lattice designs of all beamlines, simu-
1	TOTALS			-	r			1		1			Design	ш	specifications	tuning and feedback procedures
N	Material (MCH	F) 5.7	11.4	20.3	23.9	30.6	41.4	51.7	54.2	53.5	32.4					
F	FTE	103.3	146.5	194.0	248.1	267.0	290.6	314.8	356.3	379.4	379.6					in the second second

Example Prospective Resources

Already successful

- MuCol, IFAST, MUSIC, ...
- Fermilab site study
- Grants for US detector work
- DoE grant for RF test stand at SLAC

LDG might

- Integrate final cooling solenoid in the HFM programme
- Strengthen the HFM programme contribution to magnet protection studies
- Explore RF panel contributions

Other grant requests

• E.g. one for MUSIC calorimetry

Other sources to try

- Increased contributions from partners
- More grants
- •••

EU co-funding request via IFAST2

- Power converter (PSI, CERN and Infineon)
- FFAG (UKRI and ESS)
- Modulator for klystron (INFN and Scandinova)
- Mover system (CERN and ?)

Collaboration on target solenoid with fusion magnet technology F4P EUROFusion ENI Gauss Fusion

Physics case for intermediate facilities

Could leverage extra funding

Will try to collect this centrally

and the second s

Note: LDG

Reviewed the progress and the proposed R&D plan

• Good progress noted, estimated that 75% of Roadmap goals have been achieved

Reviewers: Norbert Holtkamp (chair), Mei Bai, **Frederick Bordry**, Nuria Catalan-Lasheras, **Barbara Dalena**, Massimo Ferrario, Andreas Jankowiak, Robert Rimmer, Herman ten Kate, Peter Williams

Recommendations:

- **Develop a Start-to-End Performance Simulator:** Create a comprehensive simulation framework to assess the robustness of key parameters, including luminosity, cost, and energy consumption. This tool should enable performance optimization, sensitivity analysis, and risk mitigation across the entire collider complex.
- Define and fund a High-Field HTS and RF Development Strategy: Establish a clear roadmap for the development of the high-field HTS magnet and the RF systems, including well-defined specifications and performance targets. Securing dedicated funding is essential to advance these critical technologies.
- **Conduct an Independent Review of Scope, Schedule, and Costs:** An urgent, independent evaluation is needed to assess the overall scope, timeline, and budget of the Muon Collider R&D program for the period 2026-2036. This review will be crucial to ensure that funding requests for this R&D phase are well-justified and aligned with project objectives.

Mike Seidel (LDG chair) wants to improve the effectiveness of LDG

Prepare a Roadmap update during the ESPPU process (early 2026)

Tentative IAC Charge

Review the R&D plan and give guidance for improvements

- Is the scope of the programme adequate?
- Is the timeline realistic?
- Does the programme set the right priorities?
- Are we exploiting synergies sufficiently and is there additional potential that we should explore?
- Do you have guidance for the muon collider and R&D plan strategy?

Reserve

D. Schulte Muon Collider, Annual Meeting, DESY, May 2025

-1-2

Cost and Power Consumption

Determined the cost scale for the collider

Different sources of uncertainty

- No design for all systems
 - Error bar in both directions
- Technologies (e.g. HTS cost development)
 - Error bar in both directions
- Design has not been optimised for cost
 - Error bar only to lower cost

Some sources of uncertainty exist

Several MW for cooling of losses in RCS cavities required

This is a great basis for future developments and optimisation

See Carlo on Wednesday

Scope (see Addendum)

- **Magnet technology** developments: HTS solenoids for muon production and cooling; and collider ring dipoles and fast-ramping magnet systems.
- **RF technologies**: components such as klystrons; cavities working in high magnetic field and with high beam loading; and test infrastructure.
- **Muon cooling technology**: the technologies for muon cooling and their integration into the 6D cooling and the final cooling system.
- The muon cooling demonstration programme: integration and test of cooling technologies; performance verification; and development of key components like HTS solenoids and RF systems.
- **Design and technologies**: study of key design challenges, including collider modelling; lattice optimization; advanced simulations; site impact studies to balance cost, efficiency, and risk; and technical developments as target, RF and MDI.
- **Detector R&D priorities**: simulation; technology; and software to enhance physics output while reducing beam-induced backgrounds

R&D Plan Resources

Year	Ι	II	III	IV	V	VI	VII	VIII	IX	X
Accelerator Design and Technologies										
Material (MCHF)	1.6	3.2	4.8	6.4	9.6	10.8	12.0	12.0	12.0	12.0
FTE	47.1	60.6	75.0	85.0	100.0	120.0	150.0	174.6	177.2	185.1
Demonstrator										
Material (MCHF)	0.6	2.2	3.9	5.4	7.8	15.1	25.9	32.4	31.8	12.6
FTE	9.5	11.0	12.5	29.2	29.7	30.5	25.5	27.7	26.7	25.5
Detector	Detector									
Material (MCHF)	0.5	1.1	1.6	2.1	2.1	2.1	2.1	2.6	3.1	3.1
FTE	23.4	46.5	70.0	93.0	93.0	93.0	93.0	116.4	139.5	139.5
Magnets										
Material (MCHF)	3.0	4.9	10.1	10.0	11.0	13.4	11.7	7.2	6.6	4.7
FTE	23.3	28.4	36.4	40.9	44.3	47.1	46.2	37.7	36.1	29.4
TOTALS										
Material (MCHF)	5.7	11.4	20.3	23.9	30.6	41.4	51.7	54.2	53.5	32.4
FTE	103.3	146.5	194.0	248.1	267.0	290.6	314.8	356.3	379.4	379.6

D. Schulte Muon Collider, Annual Meeting, DESY, May 2025 - ~

15

IMCC Partners

al er n

IFIO	CFRN	17		C1	To see the base of the		
50		11	INFN	FI	Tampere University	Tv	
FK	CEA-IRFU		INFN, Univ., Polit. Torino		HIP, University of Helsinki	., CA	
	CNRS-LNCMI		INFN, LASA, Univ. Milano	LAT	Riga Technical University	CA	Universite Lavai
	Ecoles des Mines St-Etienne		INFN, Univ. Padova	СН	PSI	US	Iowa State University
DE	DESY		INFN, Univ. Pavia		University of Geneva		University of Iowa
	Technical University of Darmstadt		INFN, Univ. Bologna		EPFL		Wisconsin-Madison
	University of Rostock		INFN Trieste		HEIA-FR		University of Pittsburgh
	КП		INFN, Univ. Bari	BE	Univ. Louvain		Old Dominion
UK	RAL		INFN, Univ. Roma 1	AU	НЕРНҮ		Chicago University
	UK Research and Innovation		ENEA		TU Wien		Florida State University
	University of Lancaster		INFN Frascati	ES	I3M		RICE University
	University of Southampton		INFN, Univ. Ferrara		CIEMAT		Tennessee University
	University of Strathclyde		INFN, Univ. Roma 3		ІСМАВ		MIT Plasma science center
	University of Sussex		INFN Legnaro	China	Sun Yat-sen University		Pittsburgh PAC
	Imperial College London		INFN, Univ. Milano Bicocca		IHEP		Yale
	Royal Holloway		INFN Genova		Peking University		Princeton
	University of Huddersfield		INFN Laboratori del Sud		Inst. Of Mod. Physics, CAS		Stony Brook
	University of Oxford		INFN Napoli		University of CAS		Stanford/SLAC
	University of Warwick	Mal	Univ. of Malta	ко	Kyungpook National University		
	University of Durham	FST	Tartu University		Yonsei University	DoE labs	FNAL
	University of Birmingham	PT			Seoul National University		LBNL
	University of Cambridge	SE	FSS	India	CHEP		JLAB
NL	University of Twente	52	University of Unreals	mara			BNL
D Set	aulto Muon Collidor Appu	al Mootin		Signed	MoC (58), <i>requested MoC</i> , contributor	Brazil	CNPEM 16

Tentative Accelerator Design Resources

		Millemational
Area	Tasks	FTE ^{llider}
Proton complex	Accumulator ring; combiner ring; target delivery system	2.6
Target	Spent beam and losses; higher-power alternative	1.3
Front end	Capture efficiency	1.3
Cooling	System design optimisation; capture efficiency, tolerances	3.9
Final cooling	System design optimization; tolerances	2.6
Bunch merge	Lattice design	1.3
Linacs	Lattice design	1.3
Transfer lines	Injection/extraction in rings and transfer lines	1.3
RCS	Lattice design; neutrino flux mitigation; loss mitigation, tolerances, operational cons.; eddy currents	3.9
Collider ring	Neutrino flux mitigation/tolerances; optimisation of energy acceptance; magnet field imperfections	3.9
MDI	Continued support to detectors	1.3
Start-to-end studies	Code development; collection and simulation of lattices; system specification optimization; version	
	control	3.9
Collective effects	All "conventional" collective effects along the complex	2.6
Longitudinal dynamics	All along the complex; rings; linacs/cooling	2.6
Losses	RCS cavities and cold magnets; all along complex	3.9
Neutrino flux mitigation	Neutrino flux studies along the whole complex	1.3
Absorber collective effects	Model the collective effects on the absorber and back on the beam	2.6
Demonstrator	Modelling of demonstrator specific designs	3.9
Sum		45.5
		and the second second

R&D Plan Fundamentals

The current R&D is based on the prioritised LDG Accelerator R&D Roadmap

- Goal: Assess whether investment into R&D is justified
- Design of systems containing largest risk for overall performance
- Design of the Critical Technology Elements (CTE)
- Strong interplay exists between CTE and system design
- Use state-of-the-art components where-ever possible

Proposed R&D programme

- Goal: Assess whether muon collider is feasible
- Ramp-up of resources to balance risk and investment
 - E.g. RF test stand -> cooling cell power test -> demonstrator to test one module -> several modules
- Further improve systems and expand study to all systems (start-to-end)
 - Use state-of-the-art components where possible and profit from R&D elsewhere
- Address the CTEs experimentally

Innovative nature of muon collider

- Requires to carefully prioritise the R&D
- Motivates early career scientists and engineers
- Results in important synergy with societal applications, e.g. collaborations with ENI and Infineon

R&D Plan Goals

Proposed R&D programme

- Goal: Assess whether muon collider is feasible
 - Enables to start decision process
- Ramp-up of resources to balance risk and investment
 - E.g. RF test stand -> cooling cell power test -> demonstrator to test one module -> several modules
- Further improve systems and expand study to all systems (start-to-end)
 - Use state-of-the-art components where possible and profit from R&D elsewhere
- Address the CTEs experimentally

Innovative nature of muon collider

- Requires to carefully prioritise the R&D
- Motivates early career scientists and engineers
- Results in important synergy with societal applications, e.g. collaborations with ENI and Infineon

Supporting R&D Timelines

Timeline is based on time required for R&D on the critical path

- **High-field magnets**
- Muon cooling technology and demonstrator

