

MInternational UON Collider Collaboration

IMCC and MuCol Status and Direction

D. Schulte On behalf of the International Muon Collider Collaboration

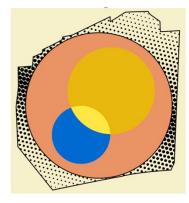
IMCC Annual Meeting, May, 2025

Funded by the European Union (EU). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the EU or European Research Executive Agency (REA). Neither the EU nor the REA can be held responsible for them. Muon Collider, Annual Meeting, DESY, May 2025

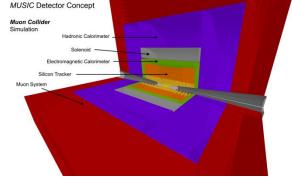
Collaboration

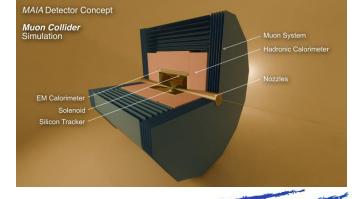
Collaboration is growing

- US had their inauguration meeting O(300) participants in person
- Now have two detector studies, MUSIC and MAIA
- Strong interest from Early Career Scientists


Increasing contributions from experts that are not yet formal members of the collaboration

• e.g. for the R&D plan


Publication and Speaker Committee is seeing an increasing number of publications also from partners that are not yet formally in the collaboration


• Accommodating rules are effective

See Mark and Massimo

ESPPU

Collaboration produced ESPPU input

- Ten-page report
- Answers to specific questions
- Back-up document
 - Assessment of collider status
 - R&D Plan
 - Important US contributions
 - Final polishing is ongoing, you Urgently sign up to support

Many thanks to all

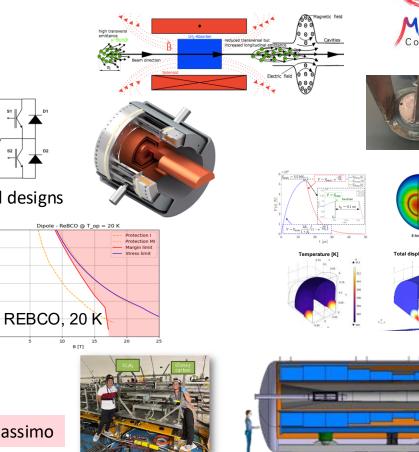
- Who did the work
- Who wrote the text
- Who edited the text
- Core editors Federico, Chris, Taylor

-1- 2

Need to continue the work

R&D Progress

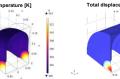
m•_ww


250

Design of many collider areas has progressed

- Lattice design
 - Proton accumulator and compressor ring
 - Much better muon cooling performance
 - **RCS** lattice designs ٠
 - Collective effects
- Technologies
 - Realistic magnet performance targets, conceptual designs
 - High-efficiency power converter design
 - RF cavities for muon cooling
 - Muon cooling module conceptual design
 - Cooling absorbers
 - Target design
- Detectors and MDI
- Demonstrator scope and design
- Will be covered later today and during the week

See Tao, Chris, and Massimo



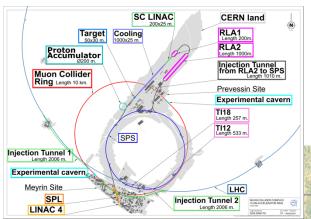
Site Studies

We focused sofar on green-field design

- Easiest to learn about the muon collider
- Common design for all regions

Site studies at CERN and Fermilab are progressing

- Need to consider realistic implementation
- Happy to include any other site


Tentative conclusions for CERN

- Could potentially reuse SPS and LHC tunnels
- All surface construction potentially on CERN site or very close
- Neutrino flux may be OK
- More detailed studies are required

Tentative conclusion for Fermilab

- Could stay on site
- More detailed studies are required

D. Schulte Muon Collider, Annual Meeting, DESY, May 2025

International

ollaboration

JON Collider

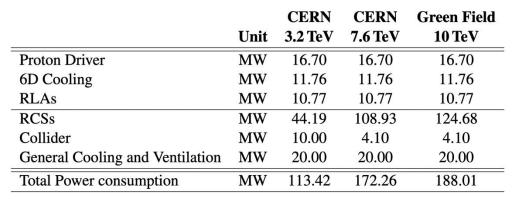
See Ed and Jeff

Cost and Power Consumption

Determined the cost scale for the collider

Different sources of uncertainty


- No design for all systems
 - Error bar in both directions
- Technologies (e.g. HTS cost development)
 - Error bar in both directions
- Design has not been optimised for cost
 - Error bar only to lower cost ٠



Some sources of uncertainty exist

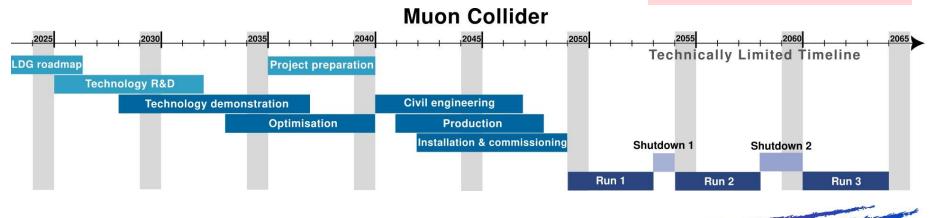
Several MW for cooling of losses in RCS cavities required

This is a great basis for future developments and optimisation

See Carlo on Wednesday

Timeline and R&D Programme

Goal is to be able to commit to a muon collider


- Initial phase to rapidly increase confidence
- Implementation minimum 10 years
- 320 MCHF material (machine 300 MCHF)
- 2700 FTEy (machine 1800FTEy)
- Then will need to develop full range of components and pre-series with industry

Main ingredients

- Detector
- Muon cooling technology
- Magnet technology
- RF technology
- Accelerator design
- Other technologies

See R&D session on Wednesday

Note: LDG

Reviewed the progress and the proposed R&D plan

• Good progress noted, estimated that 75% of Roadmap goals have been achieved

Reviewers: Norbert Holtkamp (chair), Mei Bai, **Frederick Bordry**, Nuria Catalan-Lasheras, **Barbara Dalena**, Massimo Ferrario, Andreas Jankowiak, Robert Rimmer, Herman ten Kate, Peter Williams

Recommendations:

- **Develop a Start-to-End Performance Simulator:** Create a comprehensive simulation framework to assess the robustness of key parameters, including luminosity, cost, and energy consumption. This tool should enable performance optimization, sensitivity analysis, and risk mitigation across the entire collider complex.
- Define and fund a High-Field HTS and RF Development Strategy: Establish a clear roadmap for the development of the high-field HTS magnet and the RF systems, including well-defined specifications and performance targets. Securing dedicated funding is essential to advance these critical technologies.
- **Conduct an Independent Review of Scope, Schedule, and Costs:** An urgent, independent evaluation is needed to assess the overall scope, timeline, and budget of the Muon Collider R&D program for the period 2026-2036. This review will be crucial to ensure that funding requests for this R&D phase are well-justified and aligned with project objectives.

Mike Seidel (LDG chair) wants to improve the effectiveness of LDG

Prepare a Roadmap update during the ESPPU process (early 2026)

R&D Plan Implementation

The IAC will review the R&D plan

• Starts this Wednesday

We need to refine the plan

- Scope
- Define intermediate deliverables and clarify staging
- Estimates and plans exist for the key cost driver
 - Magnets
 - Muon cooling technology
 - Detector
- Some parts need improvements to be fully defined
- Arbitration of resource estimates required in some places

Need to secure resources

Promising developments

Will best prepare our Global Muon Collider R&D Roadmap before

• Working group with technical representation from partners to prepare (as for MuCol)

D. Schulte Muon Collider, Annual Meeting, DESY, May 2025

IAC regular members:

Ursula Bassler (IN2P3, interim Chair) Mauro Mezzetto (INFN) Hongwei Zhao (Inst. of Modern Physics, IMP) Akira Yamamoto (KEK) Maurizio Vretenar (CERN) Stewart Boogert (Cockcroft) Sarah Demers (Yale) Giorgio Apollinari (FNAL)

Experts for this review Waiting for all confirmations

See R&D session on Wednesday

Way Forward

ESPPU will make some recommendation

- A US and other regional/national strategy processes will follow
- It will take years to see the decisions by CERN Council and funding agencies

We must focus on the R&D to mature the design and technologies Muon collider is an excellent project

- Promises an exciting project from the medium to very long term
 - With interest to host it in more than region
- It is challenging and innovative
- Motives Early career scientists
- Has strong synergies with other science
 - E.g. technologies relevant for FCC
 - Need to develop physics case of intermediate stages
- Has strong synergies with societal applications
 - From wind power generators to fusion reactors

Will use R&D plan proposal as basis for a Global Muon Collider R&D Roadmap

- Feed this into LDG
- Ramp-up the securing of resources (Budgets, LDG, EU-cofounding, grants in the US and elsewhere)
- Promising developments exist

D. Schulte Muon Collider, Annual Meeting, DESY, May 2025

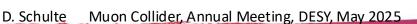
See R&D session on Wednesday

Example Prospective Resources

Already successful

- MuCol, IFAST, MUSIC, ...
- Fermilab site study
- Grants for US detector work
- DoE grant for RF test stand at SLAC

LDG might


- Integrate final cooling solenoid in the HFM programme
- Strengthen the HFM programme contribution to magnet protection studies
- Explore RF panel contributions

Other grant requests

E.g. one for MUSIC calorimetry

Other sources to try

- Increased contributions from partners
- More grants
- •••

EU co-funding request via IFAST2

- Power converter (PSI, CERN and Infineon)
- FFAG (UKRI and ESS)
- Modulator for klystron (INFN and Scandinova)
- Mover system (CERN and ?)

Collaboration on target solenoid with fusion magnet technology F4P EUROFusion ENI Gauss Fusion

Physics case for intermediate facilities

Could leverage extra funding

Will try to collect this centrally

Conclusion

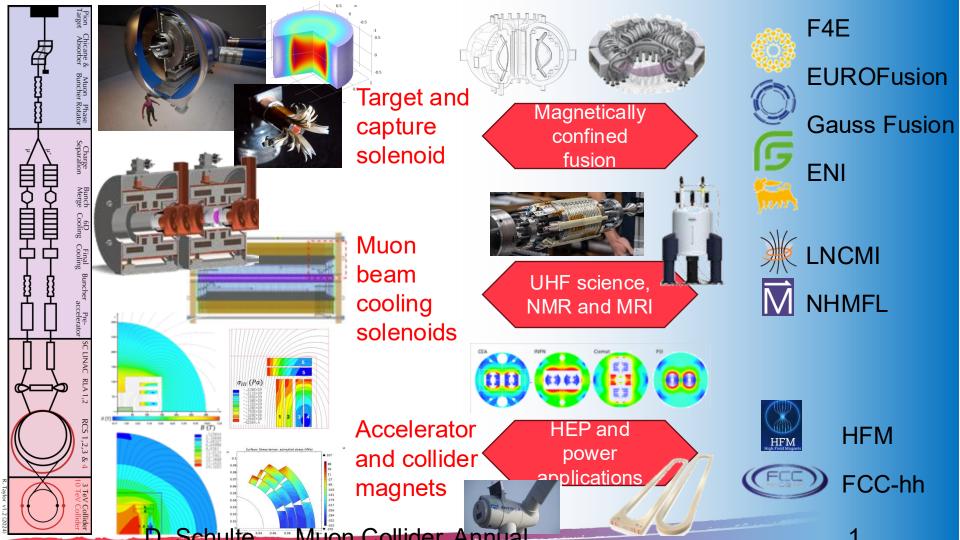
- Making great progress
 - Thanks to all the hard and dedicated work
- Need to push on
 - Performing R&D
 - Securing resources, with support from strategy processes
 - Engaging early career experts
 - Contributing to dealing with challenges that society is facing

I think we can be a little proud of what we achieved

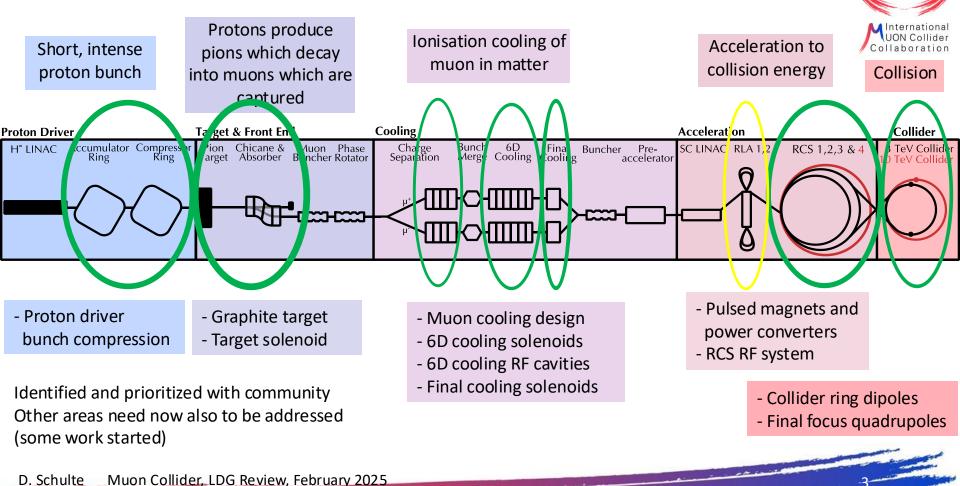
- Received many supportive mails and comments
- To join contact <u>muon.collider.secretariat@cern.ch</u>
- <u>http://muoncollider.web.cern.ch</u>

Reserve

D. Schulte Muon Collider, Annual Meeting, DESY, May 2025



-1- :


IMCC Partners

al er n

IEIO	CERN	IT	INFN	FI	Tampere University		
FR	CEA-IRFU		INFN, Univ., Polit. Torino		HIP, University of Helsinki	Ту	
	CNRS-LNCMI		INFN, LASA, Univ. Milano	LAT	Riga Technical University	CA	Université Laval
	Ecoles des Mines St-Etienne		INFN, Univ. Padova	СН	PSI	US	Iowa State University
DE	DESY		INFN, Univ. Pavia		University of Geneva		University of Iowa
	Technical University of Darmstadt		INFN, Univ. Bologna		EPFL		Wisconsin-Madison
	University of Rostock		INFN Trieste		HEIA-FR		University of Pittsburgh
	КП		INFN, Univ. Bari	BE	Univ. Louvain		Old Dominion
UK	RAL		INFN, Univ. Roma 1	AU	НЕРНҮ		Chicago University
	UK Research and Innovation		ENEA		TU Wien		Florida State University
	University of Lancaster		INFN Frascati	ES	I3M		RICE University
	University of Southampton		INFN, Univ. Ferrara	20	CIEMAT		Tennessee University
	University of Strathclyde		INFN, Univ. Roma 3		ICMAB		MIT Plasma science center
	University of Sussex		INFN Legnaro	China	Sun Yat-sen University		Pittsburgh PAC
	Imperial College London		INFN, Univ. Milano Bicocca	China	IHEP		Yale
	Royal Holloway		INFN Genova		Peking University		Princeton
	University of Huddersfield		INFN Laboratori del Sud		Inst. Of Mod. Physics, CAS		Stony Brook
	University of Oxford		INFN Napoli				Stanford/SLAC
	University of Warwick	Mal	Univ. of Malta	*0	University of CAS		
	University of Durham			КО	Kyungpook National University	DoE labs	FNAL
	University of Birmingham	EST	Tartu University		Yonsei University		LBNL
	University of Cambridge	PT	LIP		Seoul National University		JLAB
NI		SE	ESS	India	СНЕР		BNL
NL	University of Twente		University of Uppsala	Signed MoC (58), <i>requested MoC</i> , contributor		Dural	
D. Scł	nulte Muon Collider, Annua	al Meetina	g. DESY. May 2025			Brazil	CNPEM 14

Muon Collider Roadmap CTEs

Tentative Accelerator Design Resources

		M International
Area	Tasks	FTE
Proton complex	Accumulator ring; combiner ring; target delivery system	2.6
Target	Spent beam and losses; higher-power alternative	1.3
Front end	Capture efficiency	1.3
Cooling	System design optimisation; capture efficiency, tolerances	3.9
Final cooling	System design optimization; tolerances	2.6
Bunch merge	Lattice design	1.3
Linacs	Lattice design	1.3
Transfer lines	Injection/extraction in rings and transfer lines	1.3
RCS	Lattice design; neutrino flux mitigation; loss mitigation, tolerances, operational cons.; eddy currents	3.9
Collider ring	Neutrino flux mitigation/tolerances; optimisation of energy acceptance; magnet field imperfections	3.9
MDI	Continued support to detectors	1.3
Start-to-end studies	Code development; collection and simulation of lattices; system specification optimization; version control	3.9
Collective effects	All "conventional" collective effects along the complex	2.6
Longitudinal dynamics	All along the complex; rings; linacs/cooling	2.6
Losses	RCS cavities and cold magnets; all along complex	3.9
Neutrino flux mitigation	Neutrino flux studies along the whole complex	1.3
Absorber collective effects	Model the collective effects on the absorber and back on the beam	2.6
Demonstrator	Modelling of demonstrator specific designs	3.9
Sum		45.5
		and the second

R&D Plan Fundamentals

The current R&D is based on the prioritised LDG Accelerator R&D Roadmap

- Goal: Assess whether investment into R&D is justified
- Design of systems containing largest risk for overall performance
- Design of the Critical Technology Elements (CTE)
- Strong interplay exists between CTE and system design
- Use state-of-the-art components where-ever possible

Proposed R&D programme

- Goal: Assess whether muon collider is feasible
- Ramp-up of resources to balance risk and investment
 - E.g. RF test stand -> cooling cell power test -> demonstrator to test one module -> several modules
- Further improve systems and expand study to all systems (start-to-end)
 - Use state-of-the-art components where possible and profit from R&D elsewhere
- Address the CTEs experimentally

Innovative nature of muon collider

- Requires to carefully prioritise the R&D
- Motivates early career scientists and engineers
- Results in important synergy with societal applications, e.g. collaborations with ENI and Infineon

R&D Plan Resources

Year	Ι	II	III	IV	V	VI	VII	VIII	IX	X
Accelerator Design and Technologies										
Material (MCHF)	1.6	3.2	4.8	6.4	9.6	10.8	12.0	12.0	12.0	12.0
FTE	47.1	60.6	75.0	85.0	100.0	120.0	150.0	174.6	177.2	185.1
Demonstrator										
Material (MCHF)	0.6	2.2	3.9	5.4	7.8	15.1	25.9	32.4	31.8	12.6
FTE	9.5	11.0	12.5	29.2	29.7	30.5	25.5	27.7	26.7	25.5
Detector										
Material (MCHF)	0.5	1.1	1.6	2.1	2.1	2.1	2.1	2.6	3.1	3.1
FTE	23.4	46.5	70.0	93.0	93.0	93.0	93.0	116.4	139.5	139.5
Magnets										
Material (MCHF)	3.0	4.9	10.1	10.0	11.0	13.4	11.7	7.2	6.6	4.7
FTE	23.3	28.4	36.4	40.9	44.3	47.1	46.2	37.7	36.1	29.4
TOTALS										
Material (MCHF)	5.7	11.4	20.3	23.9	30.6	41.4	51.7	54.2	53.5	32.4
FTE	103.3	146.5	194.0	248.1	267.0	290.6	314.8	356.3	379.4	379.6

D. Schulte Muon Collider, Annual Meeting, DESY, May 2025

- ~