## INCC and MuCo Annual Meeting 2025

## Parameter Updates 2025 16th May 2025 R. Taylor

UON Collider Collaboration



Funded by the European Union

**CLUSTER OF EXCELLENCE** QUANTUM UNIVERSE

# 





Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG





## Overview

### MuCol Parameter Report 2025

### Muon Collider Options

**Big Parameters** 

Trade-Offs and Accelerator Models

### **Smaller Parameters**



## **MuCol Parameter Report 2024**

### Thank you for all your contributions!





A Design Study for a Muon Collider complex at 10 TeV centre of mass

### **MILESTONE REPORT**

### **PRELIMINARY PARAMETERS**

## **MuCol Parameter Report 2024**

### Thank you for all your contributions!



Grant Agreement No: 101094300

## **MuCoL**

A Design Study for a Muon Collider complex at 10 TeV centre of mass Horizon Europe Framework Programme

### **MILESTONE REPORT**

### **PRELIMINARY PARAMETERS**

**MILESTONE NO 5** 

IMCC & MuCol Annual Meeting - Parameter Preparation -16th May 2025



### ... now lets do it again!

## **MuCol Parameter Report 2025**

Title: Consolidated parameters Deadline: **31**<sup>st</sup> **October 2025** 

Useful not just as paperwork, but as a reference to check other systems.

I will re-open the spreadsheet for smaller iterative changes, taking 2024 report & ESPPU as baseline.



verb past tense: con

- 1. make (so "the first ph
- strengthe "the com

Similar:

2. combine "all manufa

Similar:

- combine "consolic
- BRITISH combine "the Con 1985

Initiating now, in case there are any parameters which require more preparation, and any inter-group deadlines.



| solidate                                                                                    |
|---------------------------------------------------------------------------------------------|
| dert/                                                                                       |
|                                                                                             |
| solidated; past participle: consolidated                                                    |
| mething) physically stronger or more solid.                                                 |
| nase of the project is to consolidate the outside walls"                                    |
| en (one's position or power).                                                               |
| pany consolidated its position in the international market"                                 |
| strengthen make stronger make secure make stable                                            |
| (a number of things) into a single more effective or <u>coherent</u> whole.                 |
| acturing activities have been consolidated in new premises"                                 |
| combine unite merge integrate amalgamate fuse 🗸                                             |
| (a number of financial accounts or funds) into a single overall account or set of accounts. |
| lated accounts"                                                                             |
| (separate pieces of legislation) into a single legislative act.                             |
| npanies Act 1948 and subsequent enactments were consolidated by the Companies Act           |







### There are many muon colliders. (48 combinations - not inc. site)







There are many muon colliders. (48 combinations - not inc. site)

### Driver Impact

- 2 MW p<sup>+</sup> 4 MW **p**<sup>+</sup>
- Transmission
- **Rectilinear B8 Rectilinear B10**
- Longitudinal emittance

Collider 11 T **Collider 14 T** 

- Luminosity
- 3 TeV 7.6 TeV Energy **10 TeV**

**Achieved Intensity Target Intensity** 

Decay, optics design Intensity in the front-ends

RF cavities downstream, luminosity

Circumference,  $\beta^*$ 

Number of RCS, circumference, luminosity, neutrino radiation

Luminosity, collective effects

### **Technology Difference**

Proton Driver 5 GeV / 10 GeV Target graphite / Lq Pb / Fl W

Rectilinear magnet stress and integration

HTS vs NbSn3

RCS magnets, collider optics

Aperture, gradients, optics

There are many muon colliders. (48 combinations - not inc. site)

### Driver Impact 2 MW p<sup>+</sup> Transmission Intensity in the front-ends 4 MW **p**<sup>+</sup> Longitudinal RF cavities downstream, **Rectilinear B8** emittance **Rectilinear B10** luminosity Collider 11 T Luminosity

Circumference,  $\beta^*$ 

Number of RCS, circumference, luminosity, neutrino radiation

Luminosity, collective effects

## Baseline is: 2 MW, RectB8, Collider 14 T, 10 TeV, target intensity

R. Taylor

**Collider 14 T** 

3 TeV

7.6 TeV

**10 TeV** 

**Achieved Intensity** 

**Target Intensity** 

Energy

Decay,

optics design

IMCC & MuCol Annual Meeting - Parameter Preparation -16th May 2025

### **Technology Difference**

Proton Driver 5 GeV / 10 GeV Target graphite / Lq Pb / Fl W

Rectilinear magnet stress and integration

HTS vs NbSn3

RCS magnets, collider optics

Aperture, gradients, optics

There are many muon colliders. (48 combinations)

2 MW p<sup>+</sup> 4 MW **p**<sup>+</sup>

**Rectilinear B8 Rectilinear B10** 

Collider 11 T Collider 14 T

> 3 TeV 7.6 TeV **10 TeV**

**Achieved Intensity Target Intensity** 

-aγ, optics design

Luminosity, collective effects

## Baseline is: 2 MW, RectB8, Collider 14 T, 10 TeV, target intensity?

IMCC & MuCol Annual Meeting - Parameter Preparation -16th May 2025



### RCS magnets, collider optics

Aperture, gradients, optics

## **Incremental Updates**

- Intensity has impacts across complex
  Especially collective effects efforts
  - Want latést transmission from systems
- Other examples non-system dependent?



on CERNBox Spreadsheet • (Link by the end of month)

|                 | 1           |        |             |                |                |
|-----------------|-------------|--------|-------------|----------------|----------------|
| Subsystem       | Energy      | Length | Achieved    | Achieved       | Target         |
|                 |             |        | Transm.     | $\mu^-$ /bunch | $\mu^-$ /bunch |
|                 | ${\rm GeV}$ | m      | %           | $10^{12}$      | $10^{12}$      |
| Proton Driver   | $5(p^+)$    | 1500   | -           | $500 (p^+)$    |                |
| Front End       | 0.17        | 150    | 9           | 45.0           |                |
| Charge Sep.     | 0.17        | 12     | 95          | 42.8           |                |
| Rectilinear A   | 0.14        | 363    | 50          | 21.4           |                |
| Bunch Merge     | 0.12        | 134    | 78          | 16.7           |                |
| Rectilinear B   | 0.14        | 424    | 32          | 5.3            |                |
| Final Cooling   | 0.005       | 100    | 60          | 3.2            |                |
| Pre-Acc.        | 0.25        | 140    | 86          | 2.8            | 4.0            |
| Low-Energy Acc. | 5           | _      | <i>90</i> * | 2.5            |                |
| RLA2            | 62.5        | o2430  | 90          | 2.3            |                |
| RCS1            | 314         | o5990  | 90          | 2.1            |                |
| RCS2            | 750         | o5990  | 90          | 1.9            |                |
| RCS3            | 1500        | o10700 | 90          | 1.7            |                |
| 3 TeV Collider  | 1500        | o4500  | -           | 1.7            | 2.2            |
| RCS4            | 5000        | o35000 | 90          | 1.5            |                |
| 10 TeV Collider | 5000        | o10000 | -           | 1.5            | 1.8            |

## • Everything else will use traffic-light system

## New Parameters compared to last year

- **Civil Engineering Parameters?** 
  - CTF3 Demonstrator Option?
  - Parameters driving cost and power?
  - 4 MW target design?



- Fixed Field Accelerator parameters?
  - Any other big updates?

## **Assumptions, limits and initial conditions**

sumptions

Encourage contributors to consider their design assumptions

- What format is best? List/table/written text?
- Also includes relation between parameters



At this stage, constraints are just as important as valuesWould encourage technologies to define major constraints.

Should state explicitly where converging designs have different starting points.

Limits

| May                 | June                | July                                   | August          |
|---------------------|---------------------|----------------------------------------|-----------------|
| Spreadsheet<br>open | Fill in spre<br>E.g | adsheet with 'eas<br>g. take from ESPP | y' changes<br>U |
|                     |                     |                                        |                 |
|                     |                     |                                        |                 |
|                     |                     |                                        |                 |
|                     |                     |                                        |                 |

### September

Finish up spreadsheet changes

### October

| May                      | June                     | July                                   | August          |
|--------------------------|--------------------------|----------------------------------------|-----------------|
| Spreadsheet<br>open      | Fill in spre<br>E.g      | adsheet with 'eas<br>g. take from ESPP | y' changes<br>U |
| Establish ope<br>large c | n questions &<br>changes |                                        | Research        |
|                          |                          |                                        |                 |
|                          |                          |                                        |                 |

### September

Finish up spreadsheet changes

### October

| May                      | June                     | July                                   | August             |
|--------------------------|--------------------------|----------------------------------------|--------------------|
| Spreadsheet<br>open      | Fill in spre<br>E.ş      | adsheet with 'eas<br>g. take from ESPP | y' changes<br>U    |
| Establish ope<br>large c | n questions &<br>changes |                                        | Research           |
|                          |                          |                                        | LaTeX file<br>open |
|                          |                          |                                        |                    |





Last year all contributors had the **same timeline**.

• Did not consider interconnected parameters.



Propose main optics tables have deadlines 2 weeks prior to technology tables.

To keep track: For what parameters would this benefit? E.g. *RCS RF* 







## Thank you to the community for your hard work, and for a fantastic Muon Collider Week!

