Energy driven results at the Muon Collider

Alfredo Glioti

INFN - Roma1

IMCC and MuCol Annual Meeting 2025 13/05/2025

INFN Istituto Nazionale di Fisica Nucleare Sezione di Roma

Chen, Glioti, Rattazzi, Ricci, Wulzer <u>2202.10509</u> De Blas, Franceschini, Glioti, Marzocca, Wang, Wulzer, <u>2505.xxxxx & 2505.xxxxx</u> (to appear soon)

High energy probes

Consider the SM as an Effective Theory

Higher collider **energy** \rightarrow Higher **reach** on new physics

High energy probes

Muon collider can **indirectly** probe energies much higher than the collision energies

$$\frac{\Delta O_{\rm BSM}}{O_{\rm SM}} \sim \frac{E^2}{\Lambda^2}$$

1% at
$$E = 10$$
 TeV $\implies \Lambda \sim 100$ TeV

Caveat: achieving percent precision requires theoretical control of EW radiation

In particular Sudakov Double Logs

$$\frac{\alpha_w}{4\pi} \log^2 \frac{E^2}{m_W^2} \sim 0.25 \text{ at } 10 \text{ TeV}$$

Double logs require **resummation**

EW Sudakov at the MuCol

Electroweak Double Logs are **special**

- The EW group is **non-abelian** and **spontaneously broken**:
 - Double Logs do **not cancel out** even for inclusive observables
 - Initial/final states are **not** EW **singlets**
- EW theory is **weakly coupled**
- IR cutoff (m_W) is **physical**
- Double Logs are **extremely large** at a Muon Collider

Several different independent and calculable observables can be measured varying the level of "inclusiveness"

BN Theorem violation Ciafaloni, Ciafaloni, Comelli (2000)

Which observables?

We consider two representative observables for which we know how to perform the DL resummation

- Two hard final particles with definite EW color
- Veto on soft/collinear EW radiation
- Inclusive on soft photons/gluons

- Two hard final particles with definite EW color
- All **radiation** is **allowed** (up to some hardness threshold)
- "Semi" since we don't sum over external legs colors

IREE strategy

Our resummation strategy is based on an InfraRed Evolution Equation (IREE)

Fadin, Lipatov, Martin, Melles, 1999

$$\lambda=E^2$$
 Born obs.
$$\label{eq:kappa}$$
 IREE
$$\lambda=m_W^2 ~~ \underset{\mbox{obs.}}{\mbox{Resummed}}$$

- Introduce an unphysical IR cutoff λ

$$\lambda < \min \left| \frac{(k_i \cdot q)(k_j \cdot q)}{(k_i \cdot k_j)} \right|$$

• Compute derivative of the observable wrt λ through **diagrammatic** techniques

$$\frac{d}{d\lambda}\mathcal{O}^{\lambda} = \mathcal{K} \cdot \mathcal{O}^{\lambda}$$

• Solve the IREE with the **boundary condition**

$$\mathcal{O}^{\lambda=E^2} \equiv \mathcal{O}^{\mathrm{Born}}$$

Exclusive observables

Exclusive on EW radiation, but inclusive on soft photons

Semi-inclusive observables

Effect of Double and Single Logs

Single-Logs (virtual only) added at fixed-order from Denner, Pozzorini (2000)

Radiation for BSM

Thanks to the large double logs processes with soft emission become as likely as processes allowed at tree-level

Energy Growing effects

To recap, we considered the following 2 \rightarrow 2 processes

	Exclusive	Semi-Inclusive	Semi-Inclusive (charged)
Difermion	$\mu\mu \to l\bar{l} \qquad \mu\mu \to q\bar{q}$	$\mu\mu \to l\bar{l} + X \qquad \mu\mu \to q\bar{q} + X$	$\mu\mu \to l\nu + X \qquad \mu\mu \to u\bar{d} + X$
Diboson	$\mu\mu \to Zh \mu\mu \to WW$	$\mu\mu \to Zh + X \mu\mu \to WW + X$	$\mu\mu \to Wh + X \mu\mu \to WZ + X$

Analytic expressions for the cross sections and Mathematica notebook for DL Resummation available

https://github.com/aglioti/muColSudakov

Some things are still WIP, will be finalized soon

Results on effective operators

Diboson & Dilepton

Results on effective operators

Reach on BSM models

Flavor at MuCol

We can apply the same strategy on **flavor-violating** 4-fermion operators

For example, the famous **bsµµ contact interaction** can be probed by

Even in this case we can exploit the **energy growth** to probe higher new physics scales

However, no (or small) interference with SM $ightarrow ~\delta\sigma/\sigma_{
m SM} \sim E^4/\Lambda^4$

NP reach is comparable with low energy precision measurements

The MuCol is also a flavor machine!

Flavor at MuCol

Different final states probe the parameter space in different directions

This analysis for now only contains the exclusive predictions

Adding also semi-inclusive and charged states would improve the bounds even more (WIP)

Flavor: high vs low energy

Conclusions

- A 10 TeV Muon Collider can indirectly probe New Physics up to 100+ TeV
- Large radiation effect allows to probe New Physics in a richer way compared to tree-level prediction
- This also extends to **flavor violating observables**, where the Muon Collider is competitive with other specific experiments
- Furthermore, the study of EW radiation is an amazing playground of fundamental QFT questions

A lot of physics to be done!