

MInternational UON Collider Collaboration

Status of the Interaction Region Design for the 10TeV Muon Collider

Marion Vanwelde, with input from Kyriacos Skoufaris and Christian Carli

IMCC Annual meeting, 15th May 2025

Content: Status of the IR Design for the 10TeV Muon Collider

2

3

No significant changes to the IR lattice design since the previous MDI workshop (<u>https://indico.cern.ch/event/1402725/</u>)

 \rightarrow Reminder of the main Requirements & Challenges

 \rightarrow Overview of the collider ring (see also <u>specific presentation</u>)

Multiple iterations on the IR and CC sections to mitigate Beam-Induced Background (BIB) and improve momentum acceptance.

- Versions with different constraints & Performances
- Comparison of IR versions \rightarrow Lattice design impacts the BIB

Interaction region lattice design:

• Current IR lattice design & Updates

Requirements & Overview of the Collider Ring

10TeV Muon Collider

Parameter	Symbol	Value
Beam energy	E	5000 GeV
Luminosity per IP	L	$\sim 20 * 10^{34} cm^{-2} s^{-1}$
Bunch population	N _p	$1.8 * 10^{12}$
Repetition rate	f _r	5 <i>Hz</i>
Normalized transverse rms emittance	$\varepsilon_{nx} = \varepsilon_{ny}$	25 μm
Geometric transverse rms emittance	$\varepsilon_{gx} = \varepsilon_{gy}$	0.528 nm
Longitudinal emittance	ε_l	0.314 eVs
Rms bunch length	σ_{z}	1.5 <i>mm</i>
Relative rms energy spread	$\delta = \frac{\sigma_E}{E}$	0.1 %
Beta function at IP	$\beta_x^* = \beta_y^*$	1.5 <i>mm</i>
Circumference	С	~ 10 km

4

Requirements & Challenges

Limitations on the magnetic **Fields & Gradients**

- → Large **magnet aperture** and sensitivity to unwanted multipolar components.
- → High magnetic field required (HTS) with good field quality

 $\boldsymbol{*}\boldsymbol{\delta} = \mathbf{0}.1\%$

Short muon lifetime

- → BIB to mitigate and W shielding **needed** inside the magnets.
- → Neutrino radiation must remain negligible at Earth's surface: minimal straight sections.

Required performance:

- \rightarrow Transverse DA: ~ 3-4 σ
- \rightarrow Momentum acceptance: ~2-3 σ

Circumference ~10 km +

s [m]

6

s [m]

Comparison of IR lattice versions

From version v0.4 to the current lattice version

Multiple iterations: still a work in progress.

Multiple iterations on the IR and CC to mitigate BIB and try to improve momentum acceptance. Magnetic fields differ from one version to another and (sub-)versions are optimized (or not) with different constraints (for example shielding thickness).

Collider ring versions: Interaction region

Version 0.4:

ollaboration

- No straight section between the FF triplet & CC sections
- 3 pairs of sextupoles in CC
- Poor Dynamic aperture

Version 0.6:

- • Long straight section in the IR for smaller eta in the CC
 - No chicane.
 - Max **B** set to 20T at the magnet aperture

Current IR lattice design & Updates

Muon Collider: Interaction region

- Long drift for IP (L* = 6m), triplet for the final focusing, chicane to reduce the BIB, long straight section to smoothly reduce the β functions without increasing W functions, 2 quads at the end to control lattice functions.
- The IR long straight sections result in many secondary particles from muon decay that accumulate. A chicane before the FF helps remove these particles as much as possible before reaching the nozzle, with parameters depending on the BIB requirements.

 No combined-function magnet in FF triplet. IR quadrupole magnetic fields have been adapted to respect the AG plots constraints for HTS quadrupoles with **T** = **4.5K**.

International UON Collider ollaboration

> • The first quadrupole is divided into three magnets to maximize the field gradient.

Summary

- No significant changes to the IR lattice design since the previous MDI workshop.
- The IR quadrupole magnetic fields have been adapted to meet AG plots constraints for HTS quadrupoles with T = 4.5K, assuming an aperture = $5\sigma + 4cm$.
- Multiple iterations on the IR and CC sections to mitigate the BIB and improve momentum acceptance.
- The main difference for the IR design is the addition of a long straight section from v0.6 onwards (optics changed in CC to improve momentum acceptance).
- The IR long straight sections generate many secondary particles that accumulate. A chicane before the FF removes these particles before the nozzle, with parameters defined by BIB requirements.

Thank you for your attention

The lattice presented is still a work in progress and subject to change in the future

Back-up slides

Summary of the collider ring versions

[ш] О

IR: Aperture = 5σ + **2cm**; No chicane Max **B** set to 20T at the magnet aperture **<u>CC:</u>** No Q' control in the CC Ap. = 5σ + **2cm**

Performances:

DA~ 2.5 σ / 4.5 σ for $\delta = -10^{-3} / +10^{-3}$

IR: Aperture = 5σ + **4cm** + chicane Max **B** set to 20T at the magnet aperture **<u>CC:</u>** No Q' control and huge sensitivity to phase advance, Ap. = 5σ + **4cm Performances:**

Particles lost for $\delta = 7 * 10^{-4}$

<u>**IR:</u>** Ap = 5σ + **4cm**+ chicane + **no combinedfunction FF quads;** Maximum quadrupole gradients and apertures from AG plot.</u>

<u>CC & Arcs:</u> not yet optimized for 4cm shielding. <u>Performances:</u>

DA ~ 2σ for $\delta = \pm 10^{-3}(1\sigma_{\delta})$ for $B_{max} = 20T$ DA ~ 2σ for $\delta = \pm 8 * 10^{-4}$ 18

Muon Collider: Interaction region

Montague chromatic functions:

$$W = \sqrt{A^2 + B^2}$$
$$A = \frac{d \alpha}{d \delta} - \frac{\alpha}{\beta} \frac{d \beta}{d \delta} \qquad B = \frac{1}{\beta} \frac{d \beta}{d \delta}$$

- W describe variations of Twiss α and β for (small) momentum offsets.
- The very small β^* at the IP induce very large β function in the strong focusing FF quadrupoles, resulting in **significant chromatic effects**.
- → Very large W functions at the end of the IR.
- \rightarrow Need for a local Chromatic Correction section.

