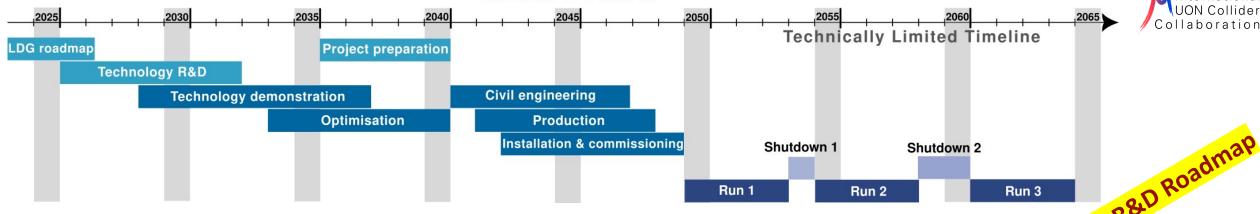
IMCC Annual Meeting

DESY - May 15, 2025

Funding & Collaboration growth discussion

- → national/regional funds how do we better coordinate?
- → how to contact new institutes/countries? Synergies?
- → how to be more inclusive, encourage community growth and access new resources?

Nadia Pastrone



Timeline & R&D Resources need

Year	т	П	Ш	IV	V	VI	VII	X/TIT	IX	X		
	ı			1 V	V	V I	V 11	VIII	IA	Λ		
Accelerator Design and Technologies												
Material (MCHF)	1.6	3.2	4.8	6.4	9.6	10.8	12.0	12.0	12.0	12.0		
FTE	47.1	60.6	75.0	85.0	100.0	120.0	150.0	174.6	177.2	185.1		
Demonstrator												
Material (MCHF)	0.6	2.2	3.9	5.4	7.8	15.1	25.9	32.4	31.8	12.6		
FTE	9.5	11.0	12.5	29.2	29.7	30.5	25.5	27.7	26.7	25.5		
Detector												
Material (MCHF)	0.5	1.1	1.6	2.1	2.1	2.1	2.1	2.6	3.1	3.1		
FTE	23.4	46.5	70.0	93.0	93.0	93.0	93.0	116.4	139.5	139.5		
Magnets												
Material (MCHF)	3.0	4.9	10.1	10.0	11.0	13.4	11.7	7.2	6.6	4.7		
FTE	23.3	28.4	36.4	40.9	44.3	47.1	46.2	37.7	36.1	29.4		
TOTALS												
Material (MCHF)	5.7	11.4	20.3	23.9	30.6	41.4	51.7	54.2	53.5	32.4		
FTE	103.3	146.5	194.0	248.1	267.0	290.6	314.8	356.3	379.4	379.6		

From LDG Review - February 2025

Conduct an Independent Review of Scope, Schedule, and Costs: An urgent, independent evaluation is needed to assess the overall scope, timeline, and budget of the Muon Collider R&D program for the period 2026-2036. This review will be crucial to ensure that funding requests for this R&D phase are well-justified and aligned with project objectives.

Totals:

Duration 10 years

Accelerator: 300 MCHF material, 1800 FTEy Detector: 20 MCHF material, 900 FTEy

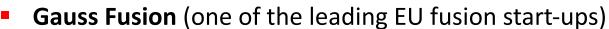
POINTS TO BE NOTED:

- Our present estimate require careful revision/planning
 - → how to we face/collect the estimated needed resources?

Magnet R&D impact - Luca Bottura talk

	HEP and NP	High-field science	NMR	MRI	Fusion	Motors/generators
TM1 20@20		High field, low consumption			High-field, large bore and large stored energy	
TM2 SOLID		High field, low consumption		High-field large bore, cryo-free technology		
TM3 UHF-DEMO	FCC-ee, CLIC (e+ source)	Ultra-high-field	Ultra-high-field			High-field, compact windings
TM4 RCS-String		High pulsed power and energy recovery			High pulsed power and energy recovery	
TM5 MBHY	FCC-hh, SppC					
TM6 MBHTS	FCC-hh, SppC					3D, compact pole winding
TM7 MBHTSY	FCC-hh, SppC					3D, compact pole winding
TM8 MQHTSY	FCC-hh, SppC					3D, compact pole winding

PRACTICAL IMPACT EXAMPLES



- Framework agreement and first addendum in final negotiation
- Contribution to the design of the HTS target solenoid, relevant to the central solenoid of DTT
- EUROFusion (next step European fusion reactor)

 Contribution to the design of the HTS target solenoid, relevant to the magnets of a Volumetric Neutron Source proposed as next step in the European fusion strategy

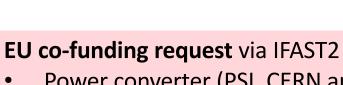
- Consultancy agreement signed in 2023
- CERN contribution to the design of the LTS/HTS GIGA stellarator magnets, based on advances in the HTS target solenoid
- ENI (oil and gas energy giant)
 - Framework agreement and first addendum signed in 2024
 - Collaboration on the conceptual design and project proposal for the CERN construction of a large bore HTS solenoid (20@20 model coil) relevant to the muon collider and fusion
 - IFAST-2 proposal to INFRA-2025-TECH-01-02 (CERN, INFINEON, PSI)
 - Proposal of fast pulsed power cell + magnet system sent to IFAST-2 coordination for ranking at TIARA
 - Industrial interest in rapidly pulsed and large energy/power supplies

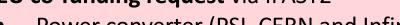
Example Prospective Resources

Already successful

- MuCol, IFAST, MUSIC, ...
- Fermilab site study
- Grants for US detector work
- DoE grant for RF test stand at SLAC

LDG might


- Integrate final cooling solenoid in the HFM programme
- Strengthen the HFM programme contribution to magnet protection studies
- Explore RF panel contributions


Other grant requests

E.g. one for MUSIC calorimetry

Other sources to try

- Increased contributions from partners
- More grants

- Power converter (PSI, CERN and Infineon)
- FFAG (UKRI and ESS)
- Modulator for klystron (INFN and Scandinova)
- Mover system (CERN and ?)

Collaboration on target solenoid with fusion magnet technology F4P

EUROFusion

ENI

Gauss Fusion

Physics case for intermediate facilities

Could leverage extra funding

Will try to collect this centrally

National/Regional funds - how to coordinate?

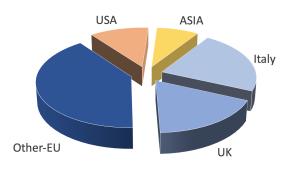
NATIONAL FUNDS:

- √ Funding Agency
- ✓ Government
- ✓ Private

REGIONAL/INTERNATIONAL FUNDS:

- ✓ European calls
- ✓ Across regional funds (i.e. RISE) → NETWORKS FUNDS: for graduate students/ postdocs / anybody
- ✓ 3333

The international collaboration


Crucial/Strategic time to enlarge and strengthen the collaboration!

We have a lively interested community contributing at different leveL with the ESPPU ahead

22 COUNTRIES

~ 85 institutes joined so far IMCC

Memorandum of Cooperation will be signed by a few more institutes ~ 75% of the total interested to join **REVISION on-going**

Submitted ESPPU input as large project

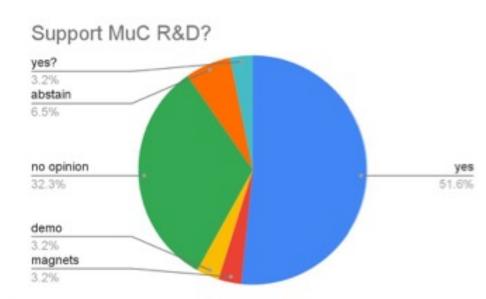
Proposed an R&D plan that can make a muon collider reality by 2050

406 pages supplementary "backup" document, ~450 authors and supporters

https://doi.org/10.48550/arXiv.2504.21417

450 authors: 26 COUNTRIES → 131 institutes

→ how to be more inclusive and exploit new resources?


Essentials

- ✓ the international community working together is steadily growing and focusing on priorities which needs to be coherently shared by all countries contributing to the ESPPU
 - → over 6 years! How can we improve?
- ✓ the international collaboration established after the LAST ESPPU recommendation, evolved in the IMCC with
 a Memorandum of Cooperation expected to be signed by joining Institutes
 - → resources allocated by CERN MTP since 2021 are complemented by institutes/FA
 → resources
 How can we improve?
- ✓ Accelerator R&D Roadmap in EU and Snowmass21 in US processes, strengthen the community, leading to define resources needs and priorities on different activities
 - **→** NEW EU ESPPU input documents

How can we prepare to support our project along the EU ESPPU on-going process?

