Update on ATLAS SUSY Searches ### **Wolfgang Ehrenfeld (DESY)** LHC Physics Discussion Meeting Hamburg, October 24th, 2011 ### **Outline** > introduction - updates since summer - missing transverse momentum with large number of multiple jets - missing transverse momentum with jets and one lepton - missing transverse momentum with one b-jet, jets and one lepton - missing transverse momentum with 2 photons - summary ### **Search Strategies for SUSY** - at the LHC sparticles are pair produced - dominantly squarks and gluinos via the strong interaction - they decay via cascades into the stable LSP (neutralino or gravitino), assuming R-parity conservation - > common signature: - multiple, high energetic jets and transverse missing momentum - distinguish final states by additional particles zero, one, two, .. leptons (e, μ), two photons, ... b-jets if 3^{rd} generation squarks are lighter than other generation squarks - > incomplete event reconstruction due to LSP - no mass peak→ SUSY is in the tails of the distributions - SM backgrounds (top, W/Z+jets, QCD) are taken from/verified in control regions #### A Word on Models - most experimental results are interpreted in one or the other model - e.g. mSUGRA/CMSSM, GMSB, simplified models, ... - the interpretation in a model give nice, coloured plots - the main experimental result is the limit on the number of signal events in the signal region (or the limit on the effective cross section) - interpretation is straight forward but not trivial - signal efficiency - signal uncertainties - statistical interpretation - > mSUGRA/CMSSM: - m₀: common scalar mass - **m**_{1/2}: common gaugino mass - A₀: common trilinear coupling - tan β: ratio of Higgs vacuum expectation values - sign(μ): sign of SUSY Higgs potential parameter - > GMSB: - Λ: SUSY breaking scale - M: messenger mass scale - N: number of messenger fields - tan β: ratio of Higgs vacuum expectation values - sign(μ): sign of SUSY Higgs potential parameter - C_{grav}: ratio of the gravitino mass to its value at the breaking scale Λ - Simplified models: - reduced particle spectrum: masses ### The Large Hadron Collider - > pp collisions at √s = 7 TeV - > LHC has performed extremely well this year: - 3.59 x 10³³ /cm²/s peak luminosity - ~ 80 pb⁻¹ per day - >5 fb⁻¹ delivered, thanks! - 50 ns bunch spacing - ~15 collisions per crossing - datasets considered by analysis up to now - 2011: 0.87 1.34 fb⁻¹ ### **ATLAS SUSY Searches** | ATLAS SUSY analyses | Publications | |---|---| | E _T ^{miss} + jets + 0 lepton | <u>arXiv:1102:5290</u> (35 pb ⁻¹) [published in PLB]; <u>ATL-CONF-2011-086</u> (163 pb ⁻¹); <u>arXiv:1109.6572</u> (1.04 fb ⁻¹) [submitted to PLB] | | E _T ^{miss} + multiple jets + 0 lepton | arXiv:1110.2299 (1.34 fb ⁻¹) [accepted by JHEP] | | E _T ^{miss} + jets + 1 lepton | <u>arXiv:1102:2357</u> (35pb ⁻¹) [PRL]; <u>ATL-CONF-2011-090</u> (163 pb ⁻¹);
<u>arXiv:1109.6606</u> (1.04 fb ⁻¹) [submitted to PRD] | | E _T ^{miss} + b jets + 0/1 lepton | <u>arXiv:1103:4344</u> (35 pb ⁻¹) [PLB]; <u>ATL-CONF-2011-098</u> (833 pb ⁻¹);
ATL-CONF-2011-130 (1.03 fb ⁻¹) | | E _T ^{miss} + jets + 2 leptons
(OS, SS, SF subtraction) | arXiv:1103:6214 (35 pb ⁻¹) [EPJC]; arXiv:1103:6208 (35 pb ⁻¹) [EPJC]; ATL-CONF-2011-091 (simplified model interpretation to SS); preliminary (1.04 fb ⁻¹) | | E_T^{miss} + jets + >= 3 leptons | ATL-CONF-2011-039 (34 pb ⁻¹) | | E _T ^{miss} +γγ | arXiv:1107:0561 (36 pb ⁻¹) [EPJC]; preliminary (1.04 fb ⁻¹) | | colored scalars | arXiv:1110.2693 (34 pb ⁻¹) [submitted to EPJC] | | eμ resonance (RPV) | <u>arXiv:1103:5559</u> (35 pb ⁻¹) [PRL]; <u>ATL-CONF-2011-109</u> (870 pb ⁻¹);
<u>arXiv:1109.3089</u> (1 fb ⁻¹) [submitted to EPJC] | | Stable hadronising squarks & gluinos | <u>arXiv:1103:1984</u> (34 pb ⁻¹) [PLB]; | | Heavy long-lived charged particles | <u>arXiv:1106:4495</u> (37 pb ⁻¹) [submitted to PLB]; | | Heavy medium-lived particles | preliminary (33 pb ⁻¹) | ## Large Jet Multiplicity + Missing E_T - use jets + missing E_T analysis and increase number of jets: 6, 7 or 8 - > selection: - similar to standard jet + missing E_T analysis - events with jets and missing $E_T \rightarrow$ veto events with p_T of $e(\mu) > 20(10)$ GeV - four signal regions used based on the number of jets and missing E_T/sqrt(H_T) - scalar mass H_T = scalar sum of all jet E_T | Signal region | 7 j 55 | 8j55 | 6 j 80 | 7j80 | | |---|----------------------------|------|---------------|------|--| | Jet p_T | > 55 GeV | | > 80 GeV | | | | Jet η | < 2.8 | | | | | | ΔR_{jj} | > 0.6 for any pair of jets | | | | | | Number of jets | ≥ 7 | ≥8 | ≥6 | ≥ 7 | | | $E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_T}$ | > 3.5 GeV ^{1/2} | | | | | ## Large Jet Multiplicity + Missing E_T - > QCD control region defined by lower number of jets, e.g. 7 → 5 jets, and inverse cut on missing E_T/sqrt(H_T) - essential to estimate QCD background from data as MC predictions are unreliable - other background estimated from MC and validated in different data control regions - signal region defined by number of jets and MET/sqrt(H_T) ## Large Jet Multiplicity + Missing E_T - > QCD control region defined by lower number of jets, e.g. 7 → 5 jets, and inverse cut on missing E_T/sqrt(H_T) - essential to estimate QCD background from data as MC predictions are unreliable - other background estimated from MC and validated in different data control regions - signal region defined by number of jets and MET/sqrt(H_T) ## b-jets + Missing E_T - 3rd generation is special: has to be light to stabilize the Higgs - selection similar to jets + missing E_T plus 1 or 2 b-tags - define 4 signal regions / two control regions and combine them for the exclusion limit #### Phenomenological MSSM: $BR(g \rightarrow b_1 b \rightarrow bb\chi^0_1) = 100\%$ - cascades including charginos or neutralinos can lead to final states with one, two, three or more isolated leptons - advantage: suppress QCD background, help in trigger - analysis requires exactly 1 lepton (e: p_T > 25 GeV or μ: p_T > 20 GeV) and ≥ 3/4 jets → four signal regions #### **Background** - fake leptons from QCD background - fully data driven estimate with "loose-tight matrix method" - non QCD background dominated by top pairs and W+jets - > semi-data driven estimate - normalize MC to data in background specific CR - extrapolate to the signal region relying on MC shapes - final background estimate done performing a simultaneous likelihood fit of the different CR - observed number of events in data consistent with SM - uncertainties dominated by jet energy scale and resolution, theory and MC modeling and statistics - > interpretation in: - mSUGRA/CMSSM (m₀,m_{1/2})-plane - simplified model gluino → chargino → neutralino squark → chargino → neutralino - bilinear R-parity violation model # Simplified model: gluino → chargino → neutralino # Simplified model: squark → chargino → neutralino $$x = (m_{\tilde{\chi^{\pm}}} - m_{\tilde{\chi^{0}}}) / (m_{\tilde{q}/\tilde{g}} - m_{\tilde{\chi^{0}}})$$ # Simplified model: gluino → chargino → neutralino # Simplified model: squark → chargino → neutralino $$x = (m_{\tilde{\chi^{\pm}}} - m_{\tilde{\chi^{0}}}) / (m_{\tilde{q}/\tilde{g}} - m_{\tilde{\chi^{0}}})$$ ### Simplified model: gluino → chargino → neutralino # Simplified model: squark → chargino → neutralino $$x = (m_{\tilde{\chi^{\pm}}} - m_{\tilde{\chi^{0}}}) / (m_{\tilde{q}/\tilde{g}} - m_{\tilde{\chi^{0}}})$$ - 3rd generation is special: has to be light to stabilize the Higgs - selection similar to one lepton + 4 jets + missing E_T plus 1 b-tags - signal region defined by missing E_T > 80 GeV, m_T> 100 GeV and m_{eff} > 600 GeV ### Phenomenological MSSM: $BR(g \rightarrow t_1 t \rightarrow tb\chi^{\pm}_1) = 100\%$ ### Diphoton + Missing E_T - Gauge Mediated SUSY Breaking (GMSB) - the very light gravitino is the LSP - event topology defined by next to lightest sparticle (NLSP) - large parameter space has neutralino NLSP: neutralino decays to photon and gravitino - final state: diphoton (+ jets) + MET - 2 photons (E_T > 25 GeV) - missing E_T > 125 GeV - QCD and EW background estimated from control regions, irreducible background from MC - > result: - observed events: 5 - expected events: 4.1 ± 0.6 ± 1.6 ### **Diphoton + Missing E_T: Interpretation** - General Gauge Mediation (GGM) - simplified model with three sparticles: Gluino for production Bino-like neutralino as NLSP m(gluino) < 776 GeV for m(neutralino) = 50 GeV - minimal GMSB / SPS8 slope - full mass spectrum - first time considered at the LHC - Λ < 145 TeV excluded</p> ### **Diphoton + Missing E_T: Interpretation** - General Gauge Mediation (GGM) - simplified model with three sparticles: Gluino for production Bino-like neutralino as NLSP m(gluino) < 776 GeV for m(neutralino) = 50 GeV - Universal Extra Dimension (UED) - mass spectrum similar to SUSY - 1/R < 1224 GeV excluded #### Search generic enough for different models! ### **Summary of ATLAS SUSY Searches** #### **Conclusion and Outlook** - ATLAS has produced an impressive number of papers/conference notes using the 2010 and 2011 data - in the channels searched so far, no significant excess above the Standard Model was found - SUSY was not "just around the corner" - several limits have surpassed those from Tevatron/LEP - besides MSUGRA/CMSSM also simplified models considered - more data still to come in 2011 (already around 4.9 fb⁻¹ on tape) and then there is 2012