Update on ATLAS SUSY Searches

Wolfgang Ehrenfeld (DESY)

LHC Physics Discussion Meeting Hamburg, October 24th, 2011

Outline

> introduction

- updates since summer
 - missing transverse momentum with large number of multiple jets
 - missing transverse momentum with jets and one lepton
 - missing transverse momentum with one b-jet, jets and one lepton
 - missing transverse momentum with 2 photons
- summary

Search Strategies for SUSY

- at the LHC sparticles are pair produced
 - dominantly squarks and gluinos via the strong interaction
 - they decay via cascades into the stable LSP (neutralino or gravitino), assuming R-parity conservation
- > common signature:
 - multiple, high energetic jets and transverse missing momentum
 - distinguish final states by additional particles

zero, one, two, .. leptons (e, μ), two photons, ... b-jets if 3^{rd} generation squarks are lighter than other generation squarks

- > incomplete event reconstruction due to LSP
 - no mass peak→ SUSY is in the tails of the distributions
 - SM backgrounds (top, W/Z+jets, QCD) are taken from/verified in control regions

A Word on Models

- most experimental results are interpreted in one or the other model
 - e.g. mSUGRA/CMSSM, GMSB, simplified models, ...
 - the interpretation in a model give nice, coloured plots
- the main experimental result is the limit on the number of signal events in the signal region (or the limit on the effective cross section)
- interpretation is straight forward but not trivial
 - signal efficiency
 - signal uncertainties
 - statistical interpretation

- > mSUGRA/CMSSM:
 - m₀: common scalar mass
 - **m**_{1/2}: common gaugino mass
 - A₀: common trilinear coupling
 - tan β: ratio of Higgs vacuum expectation values
 - sign(μ): sign of SUSY Higgs potential parameter
- > GMSB:
 - Λ: SUSY breaking scale
 - M: messenger mass scale
 - N: number of messenger fields
 - tan β: ratio of Higgs vacuum expectation values
 - sign(μ): sign of SUSY Higgs potential parameter
 - C_{grav}: ratio of the gravitino mass to its value at the breaking scale Λ
- Simplified models:
 - reduced particle spectrum: masses

The Large Hadron Collider

- > pp collisions at √s = 7 TeV
- > LHC has performed extremely well this year:
 - 3.59 x 10³³ /cm²/s peak luminosity
 - ~ 80 pb⁻¹ per day
 - >5 fb⁻¹ delivered, thanks!
 - 50 ns bunch spacing
 - ~15 collisions per crossing
- datasets considered by analysis up to now
 - 2011: 0.87 1.34 fb⁻¹

ATLAS SUSY Searches

ATLAS SUSY analyses	Publications
E _T ^{miss} + jets + 0 lepton	<u>arXiv:1102:5290</u> (35 pb ⁻¹) [published in PLB]; <u>ATL-CONF-2011-086</u> (163 pb ⁻¹); <u>arXiv:1109.6572</u> (1.04 fb ⁻¹) [submitted to PLB]
E _T ^{miss} + multiple jets + 0 lepton	arXiv:1110.2299 (1.34 fb ⁻¹) [accepted by JHEP]
E _T ^{miss} + jets + 1 lepton	<u>arXiv:1102:2357</u> (35pb ⁻¹) [PRL]; <u>ATL-CONF-2011-090</u> (163 pb ⁻¹); <u>arXiv:1109.6606</u> (1.04 fb ⁻¹) [submitted to PRD]
E _T ^{miss} + b jets + 0/1 lepton	<u>arXiv:1103:4344</u> (35 pb ⁻¹) [PLB]; <u>ATL-CONF-2011-098</u> (833 pb ⁻¹); ATL-CONF-2011-130 (1.03 fb ⁻¹)
E _T ^{miss} + jets + 2 leptons (OS, SS, SF subtraction)	arXiv:1103:6214 (35 pb ⁻¹) [EPJC]; arXiv:1103:6208 (35 pb ⁻¹) [EPJC]; ATL-CONF-2011-091 (simplified model interpretation to SS); preliminary (1.04 fb ⁻¹)
E_T^{miss} + jets + >= 3 leptons	ATL-CONF-2011-039 (34 pb ⁻¹)
E _T ^{miss} +γγ	arXiv:1107:0561 (36 pb ⁻¹) [EPJC]; preliminary (1.04 fb ⁻¹)
colored scalars	arXiv:1110.2693 (34 pb ⁻¹) [submitted to EPJC]
eμ resonance (RPV)	<u>arXiv:1103:5559</u> (35 pb ⁻¹) [PRL]; <u>ATL-CONF-2011-109</u> (870 pb ⁻¹); <u>arXiv:1109.3089</u> (1 fb ⁻¹) [submitted to EPJC]
Stable hadronising squarks & gluinos	<u>arXiv:1103:1984</u> (34 pb ⁻¹) [PLB];
Heavy long-lived charged particles	<u>arXiv:1106:4495</u> (37 pb ⁻¹) [submitted to PLB];
Heavy medium-lived particles	preliminary (33 pb ⁻¹)

Large Jet Multiplicity + Missing E_T

- use jets + missing E_T analysis and increase number of jets: 6, 7 or 8
- > selection:
 - similar to standard jet + missing E_T analysis
 - events with jets and missing $E_T \rightarrow$ veto events with p_T of $e(\mu) > 20(10)$ GeV
- four signal regions used based on the number of jets and missing E_T/sqrt(H_T)
 - scalar mass H_T = scalar sum of all jet E_T

Signal region	7 j 55	8j55	6 j 80	7j80	
Jet p_T	> 55 GeV		> 80 GeV		
Jet η	< 2.8				
ΔR_{jj}	> 0.6 for any pair of jets				
Number of jets	≥ 7	≥8	≥6	≥ 7	
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_T}$	> 3.5 GeV ^{1/2}				

Large Jet Multiplicity + Missing E_T

- > QCD control region defined by lower number of jets, e.g. 7 → 5 jets, and inverse cut on missing E_T/sqrt(H_T)
 - essential to estimate QCD background from data as MC predictions are unreliable
 - other background estimated from MC and validated in different data control regions
- signal region defined by number of jets and MET/sqrt(H_T)

Large Jet Multiplicity + Missing E_T

- > QCD control region defined by lower number of jets, e.g. 7 → 5 jets, and inverse cut on missing E_T/sqrt(H_T)
 - essential to estimate QCD background from data as MC predictions are unreliable
 - other background estimated from MC and validated in different data control regions
- signal region defined by number of jets and MET/sqrt(H_T)

b-jets + Missing E_T

- 3rd generation is special: has to be light to stabilize the Higgs
- selection similar to jets + missing E_T plus 1 or 2 b-tags
- define 4 signal regions / two control regions and combine them for the exclusion limit

Phenomenological MSSM: $BR(g \rightarrow b_1 b \rightarrow bb\chi^0_1) = 100\%$

- cascades including charginos or neutralinos can lead to final states with one, two, three or more isolated leptons
- advantage: suppress QCD background, help in trigger
- analysis requires exactly 1 lepton (e: p_T > 25 GeV or μ: p_T > 20 GeV)
 and ≥ 3/4 jets → four signal regions

Background

- fake leptons from QCD background
- fully data driven estimate with "loose-tight matrix method"
- non QCD background dominated by top pairs and W+jets
- > semi-data driven estimate
 - normalize MC to data in background specific CR
 - extrapolate to the signal region relying on MC shapes
 - final background estimate done performing a simultaneous likelihood fit of the different CR

- observed number of events in data consistent with SM
- uncertainties dominated by jet energy scale and resolution, theory and MC modeling and statistics
- > interpretation in:
 - mSUGRA/CMSSM (m₀,m_{1/2})-plane
 - simplified model
 gluino → chargino → neutralino
 squark → chargino → neutralino
 - bilinear R-parity violation model

Simplified model: gluino → chargino → neutralino

Simplified model: squark → chargino → neutralino

$$x = (m_{\tilde{\chi^{\pm}}} - m_{\tilde{\chi^{0}}}) / (m_{\tilde{q}/\tilde{g}} - m_{\tilde{\chi^{0}}})$$

Simplified model: gluino → chargino → neutralino

Simplified model: squark → chargino → neutralino

$$x = (m_{\tilde{\chi^{\pm}}} - m_{\tilde{\chi^{0}}}) / (m_{\tilde{q}/\tilde{g}} - m_{\tilde{\chi^{0}}})$$

Simplified model: gluino → chargino → neutralino

Simplified model: squark → chargino → neutralino

$$x = (m_{\tilde{\chi^{\pm}}} - m_{\tilde{\chi^{0}}}) / (m_{\tilde{q}/\tilde{g}} - m_{\tilde{\chi^{0}}})$$

- 3rd generation is special: has to be light to stabilize the Higgs
- selection similar to one lepton + 4 jets + missing E_T plus 1 b-tags
- signal region defined by missing E_T > 80 GeV, m_T> 100 GeV and m_{eff} > 600 GeV

Phenomenological MSSM:

 $BR(g \rightarrow t_1 t \rightarrow tb\chi^{\pm}_1) = 100\%$

Diphoton + Missing E_T

- Gauge Mediated SUSY Breaking (GMSB)
 - the very light gravitino is the LSP
 - event topology defined by next to lightest sparticle (NLSP)
 - large parameter space has neutralino NLSP: neutralino decays to photon and gravitino
- final state: diphoton (+ jets) + MET
 - 2 photons (E_T > 25 GeV)
 - missing E_T > 125 GeV
 - QCD and EW background estimated from control regions, irreducible background from MC
- > result:
 - observed events: 5
 - expected events: 4.1 ± 0.6 ± 1.6

Diphoton + Missing E_T: Interpretation

- General Gauge Mediation (GGM)
 - simplified model with three sparticles:

Gluino for production Bino-like neutralino as NLSP

m(gluino) < 776 GeV for m(neutralino) = 50 GeV

- minimal GMSB / SPS8 slope
 - full mass spectrum
 - first time considered at the LHC
 - Λ < 145 TeV excluded</p>

Diphoton + Missing E_T: Interpretation

- General Gauge Mediation (GGM)
 - simplified model with three sparticles:

Gluino for production Bino-like neutralino as NLSP

 m(gluino) < 776 GeV for m(neutralino) = 50 GeV

- Universal Extra Dimension (UED)
 - mass spectrum similar to SUSY
 - 1/R < 1224 GeV excluded

Search generic enough for different models!

Summary of ATLAS SUSY Searches

Conclusion and Outlook

- ATLAS has produced an impressive number of papers/conference notes using the 2010 and 2011 data
- in the channels searched so far, no significant excess above the Standard Model was found
- SUSY was not "just around the corner"
- several limits have surpassed those from Tevatron/LEP
- besides MSUGRA/CMSSM also simplified models considered
- more data still to come in 2011 (already around 4.9 fb⁻¹ on tape) and then there is 2012

