SUSY Searches at CMS

Dean Horton DESY 24th October 2011

Contents

- Summary of LHC / CMS status
- Overview of CMS SUSY results
 - A closer look at the single lepton result
- Interpretation of results so far...
- Conclusion

LHC schedule and luminosity

- Current pp run will end on Saturday 29th October.
- This is followed by ~four weeks of ion running and winter shutdown.
- CMS has recorded a total luminosity of ~5 fb-1

SUSY Searches at CMS

Searches are performed for events with the following assumed topology:

The final state contains multiple energetic jets / leptons / photons and two colourless, neutral, stable and massive states that generate missing transverse momentum

CMS results (hadronic)

Search	Luminosity (fb-1)	Public Note (*)	Date
Hadronic: HT + MET	1.1	SUS-11-004	30/08/2011
Hadronic: HT + MET + b-tags	1.1	SUS-11-006	15/10/2011
Hadronic: α_T	1.1	SUS-11-003	26/07/2011
Hadronic: MT2 (+ b-tags)	1.1	SUS-11-005	26/08/2011

^(*) https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

CMS results (lepton/photon)

Search	Luminosity (fb-1)	Public Note (*)	Date
Single lepton + jets + MET	1.1	SUS-11-015	09/09/2011
Dilepton (same-sign) + jets + MET	0.98	SUS-11-010	23/07/2011
Dilepton (opposite- sign) + jets + MET (+ Z-veto)	0.98	SUS-11-011	26/08/2011
Photons + jets + MET	1.1	SUS-11-009	24/08/2011
Z-boson + jets + MET (dilepton channel)	0.98	SUS-11-017	23/07/2011

^(*) https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

Selection criteria:

 Exactly one muon or electron and at least 3 (4) jets satisfying the requirements:

Muon	Electron	Jet
$p_T > 20 GeV$	$p_T > 20 GeV$	$p_T > 40 GeV$
$ \eta $ < 2.1	$ \eta < 1.4$, $1.6 < \eta < 2.4$	$ \eta $ < 2.4
$I_{rel} < 0.10$	$I_{rel} < 0.07 - 0.06$	-

$$I_{rel} \equiv \sum (E_T^{calo} + p_T^{tracker})/p_T^{lepton}$$
 in a cone $\delta R < 0.3$

'loose' and 'tight' search regions are further defined by:

$$H_T \equiv \sum_j \left| p_T^j \right| > 500 \, GeV$$
 Sum over all jets, j, with $p_T^j > 20 \, GeV$

$$E_T > 250 GeV$$
 'loose'
 $E_T > 350 GeV$ 'tight'

Sources of SM background:

- Semi-leptonic ttbar and W+jets
 - W -> e, mu
 - ~75% of total background (in loose selection)
 - W -> tau, with tau -> e, mu
 - ~15% of total background

Dileptonic ttbar

- With one lepton either lost or ignored
 - ~10% of total background

QCD

- Small contribution, data-driven estimation
- Single top, Z+jets
- 24th Oct 2011 Small contribution, estimated from MC

Sources of SM background:

- Semi-leptonic ttbar and W+jets
 - W -> e, mu
 - ~75% of total background (in loose selection)
 - W -> tau, with tau -> e, mu
 - ~15% of total background

Determined using lepton spectrum method

- Dileptonic ttbar
 - With one lepton either lost or ignored
 - ~10% of total background
- QCD
 - Small contribution, data-driven estimation
- Single top, Z+jets
- 24th Oct 2011 Small contribution, estimated from MC

Estimating the SM background:

Lepton spectrum method

- The lepton and neutrino are produced in the 2-body decay of W
- Use this kinematic relationship to determine the MET spectrum from the lepton spectrum.

The lepton spectrum is measured using the **muon** sample, with all cuts except MET applied.

Several corrections are taken into account:

- W polarization
- Bias caused by cut on lepton pT
- Different resolutions in measuring lepton pT and MFT.

The electron contribution is determined by scaling the distribution from the muon sample using the ratio N(e)/N(mu) of events in data observed in the range 50 GeV < MET < 150 GeV

Estimating the SM background:

Dilepton contribution

- Control samples containing ee, mu mu and e mu are obtained.
- Simulations are used to predict the ratio:
 N_{single lepton} / N_{control}
- The control samples are used to estimate the MET spectrum, by modifying the events (one electron is removed/ignored, or a lepton is replaced by a tau)

W -> tau contribution

- This is obtained using a similar method to the dilepton contribution
- The control sample is now the single lepton sample, but with the lepton replaced with a tau decaying to e or mu.

Comparing data-driven estimation to data/MC

Sample	Loose $(e+\mu)$	Loose ($e+\mu$)	Tight $(e+\mu)$	Tight ($e+\mu$)
	Control pred.	MC pred.	Control pred.	MC pred.
1 ℓ	$34.6 \pm 7.7 \pm 10.8$	53.6 ± 1.2	$8.8 \pm 3.7 \pm 3.4$	11.9 ± 0.5
Dilepton	$4.0 \pm 3.9 \pm 0.8$	7.6 ± 0.6	$0.9 \pm 1.9 \pm 0.9$	1.4 ± 0.2
1 τ	$10.5 \pm 1.2 \pm 0.5$	12.5 ± 0.6	$2.3 \pm 0.5 \pm 0.2$	3.1 ± 0.3
QCD	$0.0 \pm 1.2 \pm 0.3$	n.a.	$0.0 \pm 1.0 \pm 0.3$	n.a.
1 top,Z+jets	$0.7 \pm 0.2 \pm 0.2$	0.7 ± 0.2	$0.1\pm0.1\pm0.1$	0.1 ± 0.1
Total SM	$49.8 \pm 8.8 \pm 10.8$	74.4 ± 1.5	$12.1 \pm 4.3 \pm 3.6$	16.5 ± 0.6

Final yields:

Good agreement between observation and SM prediction

Sample	Loose Selection $(e+\mu)$	Tight Selection (e+µ)
Predicted SM 1 ℓ	$34.6 \pm 7.7 \pm 10.8$	$8.8 \pm 3.7 \pm 3.4$
Predicted SM dilepton	$4.0 \pm 3.9 \pm 0.8$	$0.9 \pm 1.9 \pm 0.9$
Predicted single $ au$	$10.5 \pm 1.2 \pm 0.5$	$2.3 \pm 0.5 \pm 0.2$
Predicted QCD background	$0.0 \pm 1.2 \pm 0.3$	$0.0 \pm 1.0 \pm 0.3$
Single top (MC), Z+jets (MC)	$0.7 \pm 0.2 \pm 0.2$	$0.1 \pm 0.1 \pm 0.1$
Total predicted SM	$49.8 \pm 8.8 \pm 10.8$	$12.1 \pm 4.3 \pm 3.6$
Data	52	8

Interpretation: CMSSM

Simplified Models

- Contain small number of parameters (2-3)
- Using the efficiencies and limits for a simplified model (determined by experiment), one can set limits in a larger class of models.

So far only a subset of analyses have released results for a small number of topologies. E.g. hadronic:

ROOT files containing the efficiencies and cross-section upper-limits can be downloaded from:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

Simplified Models

Hadronic:

T1: $\tilde{g} \rightarrow qq\chi$

Ranges of exclusion limits for gluinos and squarks, varying $m(\widetilde{\chi}^0)$ CMS preliminary

T1bbbb: $\tilde{g} \rightarrow bb \chi$

 $\begin{array}{c} b \\ \tilde{\chi}^0 \\ \tilde{\chi}^0 \\ \end{array}$

For limits on m(\widetilde{g}), m(\widetilde{q}) >> m(\widetilde{g}) (and vice versa). $\sigma^{\text{prod}} = \sigma^{\text{NLO-QCD}}$. m($\widetilde{\chi}^{\pm}$), m($\widetilde{\chi}_{2}^{0}$) = $\frac{\text{m}(\widetilde{g}) + \text{m}(\widetilde{\chi}^{0})}{2}$.

 $m(\widetilde{\chi}^0)$ is varied from 0 GeV/c² (dark blue) to $m(\widetilde{g})$ -200 GeV/c² (light blue).

Simplified Models

Leptonic:

Ranges of exclusion limits for gluinos and squarks, varying $m(\widetilde{\chi}^0)$ CMS preliminary

T1Inu: $\tilde{g} \rightarrow qq\tilde{\chi} \rightarrow qql\nu\chi$

T1lh: $\tilde{g} \rightarrow qq\tilde{\chi} \rightarrow qqll\chi$

T5zz: $\tilde{g} \rightarrow qq\tilde{\chi} \rightarrow qqZ\chi$

For limits on m($\widetilde{\mathbf{g}}$), m($\widetilde{\mathbf{q}}$) >> m($\widetilde{\mathbf{g}}$) (and vice versa). $\sigma^{\text{prod}} = \sigma^{\text{NLO-QCD}}$. m($\widetilde{\chi}^{\pm}$), m($\widetilde{\chi}^{0}_{2}$) = $\frac{\mathbf{m}(\widetilde{\mathbf{g}}) + \mathbf{m}(\widetilde{\chi}^{0})}{2}$.

 $m(\widetilde{\chi}^0)$ is varied from 0 GeV/c² (dark blue) to $m(\widetilde{g})$ -200 GeV/c² (light blue).

Conclusions

 Lots of results were published in the summer with ~1 fb-1. Still no definite signal detected.

 Still plenty more results to come, with updates using the full 2011 dataset and studies in new channels.

Stay tuned!