Remotely Setting up MicroTCA Systems

Through the Example of TARLA LLRF Control

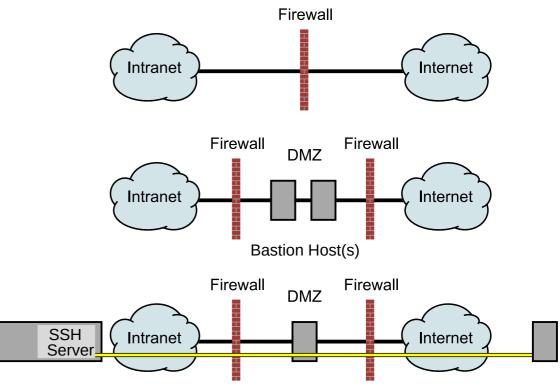
Patrick Nonn Hamburg, 12.12.2024

Motivation

Why set up MicroTCA Systems remotely?

- Shipping hardware around:
 - Is expensive
 - Takes time
 - Risks damage
- Adaption and bug fixing "in situ"
 - Alternative: Reference System at DESY
- Overall: Less headaches for all involved

Prerequisites


What can not be done remotely!

- MicroTCA crate assembled and powered
- MCH: network settings configured (might require serial interface)
 - DHCP or Static IP
- MCH and CPU connected to Ethernet and ping-able
- Correct OS installed on CPU
 - For DESY-supported systems: Ubuntu 24.04 noble numbat
- SSH server installed, configured and running

Remote Access

How to get to the MicroTCA crate

- Control system networks are usually not exposed to the internet:
 - Firewalls
 - Demilitarized Zone
- Thus some measures are required, to get access:
 - SSH Jumping
 - Virtual Private Network

ssh -j user@bastion.fqdn.edu:port user@host:port

Preparation

- Package manager
 - Add DESY repository to sources
 - If necessary, configure proxy for package manager
- If required: Install DOOCS infrastructure
 - LDAP-ENS server, doocstools, doocs-scripts
 - Watchdog
 - Servers (e.g. x2timer-server)

Example for apt:

```
user@host:~$ wget -O - https://doocs-web.desy.de/pub/doocs/DOOCS-key.gpg.asc | sudo gpg --dearmor -o /etc/apt/trusted.gpg.d/doocs-keyring.gpg user@host:~$ echo 'deb http://doocs-web.desy.de/pub/doocs focal main' | sudo tee /etc/apt/sources.list.d/doocs.list user@host:~$ echo 'Acquire::http::Proxy "http://url.of.proxy:port";' | sudo tee /etc/apt/apt.conf.d/90proxy user@host:~$ sudo apt update
```

Firmware

- MSKs firmware delivery server (Jenkins) not accessible from outside DESY
 - Firmware installation via deployment tool only usable from inside DESY
- If current firmware from MSK framework (fast):
 - Installation via PCIe (fast)
 - Requires PCIe endpoint and the debian package: mtca4u-fw-programmer

```
user@host:~$ mtca4u_fw_programmer -pv -i spi -D <path/to/dmap/file> -d <devicename_in_dmap_file> -f <path/to/bit-file>
```

- If no firmware installed or not from framework (slow):
 - Installation via Hardware Platform Management (HPM)
 - Requires package ipmitool
 - Bit-file needs to be converted to hpm: https://github.com/MicroTCA-Tech-Lab/bin2hpm

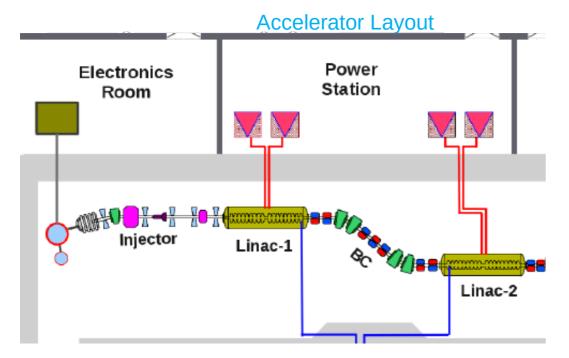
```
slot_6 (pci:pcieunis6?map=<path/to/mapp-file>)
slot_7 (pci:pcieunis7?map=<path/to/mapp-file>)
slot_8 (pci:pcieunis8?map=<path/to/mapp-file>)
slot_9 (pci:pcieunis9?map=<path/to/mapp-file>)
slot_10 (pci:pcieunis10?map=<path/to/mapp-file>)
slot_11 (pci:pcieunis11?map=<path/to/mapp-file>)
```

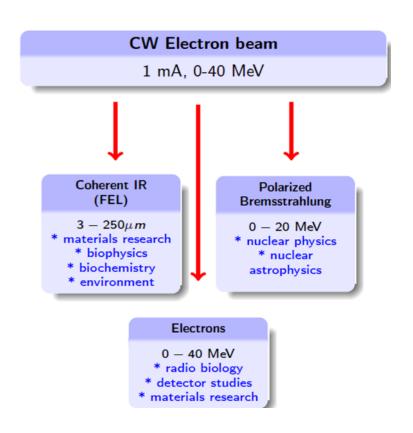
Software

- Which control system is used (EPICS, TANGO, OPC-UA)
- Which servers are needed
 - Server might need to be build for control system
 - Configuration for each server instance needs to be prepared/maintained
- Servers and configurations are published as Debian packages in DESY's public repository
- For testing purposes (or in a pinch) configurations might be "installed" via scp

Turkish Accelerator and Radiation Laboratory in Ankara (TARLA)

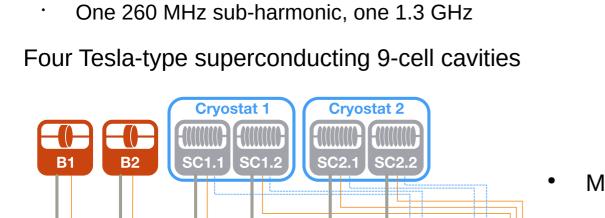
Located south of Ankara


Facility site


At the beginning of the project part of the Ankara university, still located at the campus

Main facility objectives

- Free Electron Laser between 3 250 nm using 15 40 MeV electron beam
 - 2 different optical resonators with 2.5 and 9 cm period length undulators
- Additional beam applications planned
 - Material and detector research
 - Bremsstrahlung for nuclear structure and gamma radiation studies



Very much comparable to the ELBE facility at HZDR

LLRF control system at TARLA

- Based on MicroTCA.4, single cavity control (no vector sum)
- Two normal conducting cavities for bunching

- Master Oscillator
- **LO-Generation Module**
- LLRF crate
- **External CPU**
- Power Supply for LOGM
- **EPICS-based LLRF control server**

External CPU

Remote Setup at TARLA

Firmware

- Three different firmware builds are needed:
 - Normal conducting, 260 MHz
 - Normal conducting, 1.3 GHz
 - Superconducting, 1.3 GHz
- Used HPM to restore flash-image after accidental mis-programming

Software

- First LLRF system on Ubuntu 24.04
- EPICS: 6 Ilrfctrl-server instances, 1 motor controller (new)
- DOOCS: x2timer-server, watchdog
- VNC-server for remote access

Thank you

Contact

Deutsches Elektronen- Patrick Nonn

Synchrotron DESY MSK

patrick.nonn@desy.de

www.desy.de 040 8998 1962